
Equilibrium Technology Diffusion, Trade, and Growth

Online Computational Appendix∗

Jesse Perla Christopher Tonetti Michael E. Waugh

December 28, 2020

See https://github.com/jlperla/PerlaTonettiWaugh.jl for the code and instructions.

This document is a self-contained summary of all of the equations and algorithms used to
solve the model and transition dynamics. Equations in the code have a comment to reference the
corresponding equation numbers in this document.

Achdou et al. (2017) and its technical appendix provide many of the details on the upwind finite
difference methods used here. While using these techniques to discretize the “spatial” dimension,
we make several changes to the general approach taken by many economists to solve PDEs: (1) after
discretizing the spatial dimension of the PDE to make them ODEs, we stack in further equilibrium
equations into the ODEs to make them a system of DAEs; and (2) instead of discretizing the
spatial dimension with finite differences and the time-dimension with a homegrown time-stepping
(e.g. backwards euler), we instead rely on the underlying ODE/DAE solvers to do numerically
stable, efficient, and often adaptive–time-stepping. Hence, we concentrate on specifying the full set
of ODE/DAE equations, which are then handed over to industrial strength solvers.

1 Simplified Growth Model with Transition Dynamics

We start with a simplified version of the model with transition dynamics. In the more complicated
case of this paper, the π(z, t), r(t), x(t) will come from equilibrium conditions rather than being
given exogenously, but the structure of solving the resulting system of integro-differential-algebraic
equations remains the same.

There is a useful simplifying result in both this minimal and the full model: in the transition
dynamics experiments we are looking at, the normalized distribution F (z) will remain constant
over time. Hence, we do not need to jointly solve the KFE as we will be at the stationary level
(post-normalization). This is a consequence of the PDF remaining stationary (after normalization)
under the transition dynamics we examine, and is a result from the theory, not an assumption.

1.1 Summary of Equations

We follow the notation of the main paper wherever possible. This model is the geometric Brownian
motion (GBM) model in the technical appendix of Benhabib et al. (2017).

Let Z be productivity, where Z(t) ≥M(t). Let V (Z, t) is the value function prior to normaliza-
tion, M(t) the endogenous threshold, Π(Z, t) the profits, and X(t) the adoption cost. The Π(Z, t),
r, and X(t) are given exogenously in this simplified version, and endogenized with monopolistic
competition and trade in the full model.

∗Thanks to Ben Moll for advice on numerical methods and his superb lecture notes. Excellent research assistance
was provided by Chiyoung Ahn, Sev Hou, Arnav Sood, and Dongxiao Zhang. Also,we appreciate all of the help from
Chris Rackauckas, Yingbo Ma, and Xingjian Guo for the Julia DiffEq package and expertise.

1

https://github.com/jlperla/PerlaTonettiWaugh.jl


Define the normalization that z ≡ log(Z/M(t)), v(z, t) ≡ e−z

M(t)V (M(t)ez, t)), π(z, t) ≡ e−z

M(t)Π(M(t)ez, t)),

and x(t) ≡ X(t)/M(t). Appendix B shows that the rescaled system of equations is

∂tv(z, t) = A(t)v(z, t)− π(z, t) (1)

v(0, t) =

∫ ∞
0

v(z, t)
(
ezF ′(z)

)
dz − x(t) (2)

∂zv(0, t) + v(0, t) = 0 (3)

Given the differential operator,

A(t) ≡
(
r − µ− υ2

2

)
− (µ+ υ2 − g(t))∂z −

υ2

2
∂zz (4)

Where the normalized distribution for all t is

F (z) = 1− e−θz (5)

1.2 Analytic Steady State

For the exogenous π(z, t) and x(t) we require that at some T < ∞ it becomes stationary. Hence
we will assume with little loss of generality that,1

x(t) = ζ, for all t ≥ T (6)

π(z, t) = 1, for all t ≥ T (7)

f(z, t) = θe−θz, for all t (8)

Benhabib et al. (2017) gives us a closed-form solution for this balanced growth path (i.e., steady
state when normalized)

g ≡ g(T ) = µ+
1− (θ − 1)ζ (r − µ)

(θ − 1)2ζ
+
υ2

2

θ
(
θ(θ − 1)

(
r − µ− υ2

2

)
ζ − 2

)
+ 1

(θ − 1)
(

(θ − 1)
(
r − µ− υ2

2

)
ζ − 1

) . (9)

v(z, T ) =
1

r − µ− υ2/2

(
1 +

1

ν
e−(ν+1)z

)
, (10)

where,

ν ≡ µ− g
υ2

+

√(
g − µ
υ2

)2

+
r − g
υ2/2

. (11)

Note: since v(z, T ) has been rescaled by e−z above, it is now a decreasing function in z.
This will lead to appealing numerical properties when solving the PDE for v(t, z) since it becomes
asymptotically constant as z →∞ for any t.

1Note that the π(z, T ) = 1 requires that pre-normalized profits are Π(Z, T ) ∝ eZ . With different functional forms
of the profits, we would rescale by a different power in the exponential–such as the e−ξz in the full model.

2



1.3 Summary of Equations For Numerical Solution

To solve the model numerically, we need to bound the state space by adding an artificial upper
bound, z̄. With this and using the derivation in Appendix B, the equations of Section 1.1 become,

∂tv(z, t) = A(t)v(z, t)− π(z, t) (12)

v(0, t) =

∫ z̄

0
v(z, t)

(
ez
F ′(z)

F (z̄)

)
dz − x(t) (13)

∂zv(0, t) + v(0, t) = 0 (14)

∂zv(z̄, t) + v(z̄, t) = 0 (15)

With the same operator A(t) in (4) now defined on z ∈ (0, z̄)

A(t) ≡
(
r − µ− υ2

2

)
− (µ+ υ2 − g(t))∂z −

υ2

2
∂zz (16)

A solution is a g(t) and v(z, t) such that this system of equations holds.2

1.4 Spatial Discretization with Upwind Finite-Differences

In order to solve for the dynamics of v(z, t) and g(t), we will discretize the PDE, integral, and
algebraic equations from (12) to (15) into a system of ODEs and algebraic equations.3

Grid The core PDE in (12) is defined on the interior of the domain, i.e., z ∈ (0, z̄) while the
boundary conditions are defined on the closure z ∈ [0, z̄]. To aid the implementation, define the
potentially irregular grid on [0, z̄]

zex = {zi}P+1
i=0 ∈ RP+2, (17)

where z0 = 0 and zP+1 = z̄ is a “large” number (keeping in mind that the effective number is ez̄).
We abuse notation and use z to denote the grid on the interior, representing where the PDE

holds outside of boundary conditions. That is,

z = {zi}Pi=1 ∈ RP , (18)

where we note that z ≡ zex[2 : P + 1] = {z1, z2, . . . zP }.4 Consequently, after discretizing, the
PDE will be solved on the interior {zi}Pi=1 and the boundary conditions for z0 = 0 and zP+1 = z̄
will be fulfilled by the solution through the discretization approach.

Discretized Functions After discretizing, we abuse notation and denote the grid by the variable
name, i.e., z ≡ {zi}Pi=1. We also denote discretized function with the same symbol, but dropping
the dependence on z. In the case of the payoffs and resulting functions, they are only defined on
the interior, i.e., π(t) ≡ {π(zi, t)}Pi=1 ∈ RP and v(t) ≡ {v(zi, t)}Pi=1 ∈ RP .

2Note: in this class of models, it is known that if the distribution was forced to have a finite-support with a
fixed frontier, it would lead to no long-run growth. This is not what the artificial boundary is doing. In particular,
the pre-normalized boundary is growing at the same rate as the economy, i.e., Z̄(t) = M(t)ez̄. We have numerically
verified that for a large z̄, this converges to the known analytic solution with an infinite support.

3As a test, we solve the steady state version of the discretized system of ODEs numerically and compare it to the
closed-form solution in Section 1.2 to determine the degree of numerical error and stability of the methods.

4Throughout this document, when we use the [] to access within an array, it has 1 based indices.

3



Discretized Operator To discretize the system, we use upwind finite differences. In particu-
lar, we need to discretize the differential operator in (16) subject to the (14) and (15) boundary
conditions. Crucially, since these boundary conditions are homogeneous, we can decompose the
linear A(t) operator into additive parts where: the ∂z is discretized as L−1 using backwards first
differences, and the ∂zz is discretized as L2 using central second difference. Furthermore, the L−1
and L2 linear operators impose the boundary conditions (14) and (15) for any vector they operator
on.

See Appendix A.3 for the formulas for L−1 and L2, and https://github.com/QuantEcon/

SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.

pdf for the derivations. While the full equations are complicated by the irregular grids and boundary
conditions, for intuition note that the discretization of the L−1 backwards first difference operator
is such that in the interior

∂zv(zi) ≈ L−1 v(zi) =
vi − vi−1

zi − zi−1
, for i = 2, . . . P − 1

Using that, we can calculate the approximate ∂zv(zi) for all v ≡ {v(zi)}Pi=1 with L−1 v and
∂zzv(zi) for all i as L2v. Alternatively, combining the discretization of A(t) in (16) subject to the
boundary conditions is then the P × P matrix

A(t) ≡
(
r − µ− υ2

2

)
I − (µ+ υ2 − g(t))L−1 −

υ2

2
L2, (19)

where I is the identity matrix.
While non-binding in practice here, to check that the L−1 backwards differences is the correct

upwind direction, verify that5

µ+ σ2 − g(t) < 0. (20)

Quadrature In order to discretize (13), we need to calculate the integral using quadrature.
Since the grid points are already given (i.e., we can’t choose Gaussian quadrature nodes), we use
the weights for the non-uniform trapezoidal rule.

To calculate these, use ∆− and ∆+ backwards and forward diffs (respectively) for the z grid.
That is, ∆i,+ = zi+1 − zi for i = 0, . . . P , and ∆i,− = zi − zi−1 for i = 1, . . . P + 1. Pad these with
(with ∆0,− = 0 and ∆P+1,+ = 0), so that from (A.3) and Appendix A.1

∆− ≡
[

0
diff(z)

]
∈ RP+2 (21)

∆+ ≡
[
diff(z)

0

]
∈ RP+2. (22)

Define

ω̄ ≡ 1

2
(∆− + ∆+) ∈ RP+2 (23)

Ξ1 ≡
1

1− ξ∆0,+
(24)

ΞP ≡
1

1 + ξ∆P+1,−
. (25)

5In the steady-state, this equation will be fulfilled for any non-degenerate solutions, but it is best to check this
result at a few points in the transition path for off-BGP steps in the numerical algorithm.

4

https://github.com/QuantEcon/SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.pdf
https://github.com/QuantEcon/SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.pdf
https://github.com/QuantEcon/SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.pdf


Use (B.21), so that the rule only uses the interior values v1(t) to vP (t) and all other values are
collapsed into constants (i.e., ez and the F ′(z)) with ω̄ so that6

ωi ≡


ω̄1

θe(ξ−θ)z1
1−e−θz̄ + ω̄0Ξ1

θe(ξ−θ)z0
1−e−θz̄ for i = 1

ω̄i
θe(ξ−θ)zi
1−e−θz̄ for i = 2, . . . P − 1

ω̄P
θe(ξ−θ)zP
1−e−θz̄ + ω̄P+1ΞP

θe(ξ−θ)zP+1

1−e−θz̄ for i = P

(26)

Using this definition, the integral is approximated by a linear operator ω ∈ RP applied to the
solution of the PDE on the interior, i.e., v(t).∫ z̄

0
v(z, t)

(
ez
F ′(z)

F (z̄)

)
dz ≈ ω · v(t). (27)

1.5 Discretized Model as an DAE

Let v1(t) be the 1st element in the v(t) vector (i.e., the first value in the interior). From Ap-
pendix A.2, we know that v(0, t) = Ξ1v1(t) Then value matching condition in (12) and (13) along
with the system of ODEs becomes the system of differential-algebraic equations (DAE)

v′(t) = A(t)v(t)− π(t) (28)

0 = Ξ1v1(t)− ω · v(t) + x(t). (29)

To find the stationary solution at T , v′(T ) = 0, we can solve the nonlinear system of equations

0 = A(T ; g)v(T )− π(T ) (30)

0 = Ξ1v1(T )− ω · v(T ) + x(T ), (31)

where the A(T ; g) notation is to reinforce that it is the only component which is a function of g.
This can be solved by using a nonlinear solver for v(T ) and g. This can also be solved by iterating
on g: fix g, solve the linear (30) for v(T ), check (31) for a non-zero residual, and update the guess
of g until convergence to a sufficiently small residual.

1.6 Solving the Transition Dynamics

Transition dynamics can be solved for any exogenous x(t) and π(z, t) functions defined on t ∈ [0,∞)
where they remain constant after T . The general approach for this is to directly solve the system
(28) and (29) as a DAE.7

• Choose an appropriate z grid, with a large number of points close to 0 as well as near the z̄.8

6It is important to remember that we are imposing the boundary conditions here in the calculation of the quadra-
ture rules, so this approach would require adjustment with different boundaries (i.e., the Ξ1 and ΞP might be
different).

7We experimented extensively with the more typical method in the economics literature of guessing a path for
g(t), solving the discretized system as an ODE in (28), and then minimizing residuals of (29). For various reasons,
this approach ended up being much slower and less stable for this particular problem, which led to the DAE solution.
While we were able to get solutions using the typical approach for the simple model, it failed to effectively solve the
full model dynamics robustly.

8There is a degree of sensitivity in this model for the particular choice of z̄ and the grid points for several reasons:
(a) the imposition of the (14) condition on ∂zv(0, t) is analytically the correct boundary condition of the optimal
stopping problem for the imitation threshold–it comes from the smooth-pasting condition–but is sensitive to the
precise curvature. For this reason, the discretization needs to give it enough precision or the g(t) can get distorted;
(b) the majority of the curvature is close to the z = 0 barrier, after which the function rapidly becomes constant;
(c) the artificial boundary at z̄ introduces a lot of curvature right near the end. If there are not enough grid points

5



• Identify an industrial-strength DAE solver (e.g., Sundials.jl in http://docs.juliadiffeq.

org/latest/tutorials/dae_example.html).9 To use these solvers, you provide an operator
in the form of a stacked system of ODEs and algebraic equations, and then flag the algebraic
ones for the solver.

• Find the time T steady state as v(T ) ∈ RP and g(T ) ∈ R from (30) and (31) as the initial
condition, for working backwards in time.10

• Setup a function for equations (28) and (29), tagging the last equation as an algebraic one.

• Solve the system, which is at most a medium-sized problem for a serious DAE solver.

This approach to solving transition dynamics seems to be generally applicable:11 (1) use a spatial
discretization to turn the PDEs into a system of ODEs; (2) add any equilibrium constraints on the
value functions or distributions as algebraic equations, using quadrature to convert any integrals
into linear operators; (3) stack both to create a DAE system, and then use a high-performance
solver. A more general piece of advice for these is for economists to exploit high-performance
ODE solvers with flexibility for various time-stepping methods rather than discretizing the time
dimension on their own.

2 Full Growth Model with Transition Dynamics

The fundamental differences between solving the full model with transition dynamics and the simple
model presented earlier are the following:

• The π(z, t) and x(t) come from static equilibrium conditions given the trade-structure of the
paper and the number of active local varieties, Ω(t), rather than being given exogenously

• The interest rate r(t) is no longer given exogenously, but needs to be found in equilibrium.
Luckily, this is forward looking and can be solved in the current structure with only minor
changes since the transition dynamics are being solved backwards

• The number of varieties Ω(t) is endogenously determined based on the endogenous entry deci-
sion, and may change slowly according to profit maximizing and income smoothing incentives

• There is an additional algebraic equation for the export threshold, ẑ(t)

General Algorithm Of these, the only significant change is that the Ω(t) must be solved sepa-
rately since the entry decision is dynamic, forward-looking, and begins with a stock Ω(0). Therefore,
we cannot simply add it as a further algebraic equation. In order to find the solution, we will need
to guess a sequence of Ω(t) fulfilling the boundary conditions, solve the model, and iterate to
convergence.

close to the z̄, then the local curvature near v(z̄, t) effects a larger part of the whole distribution; and (d) since
the expectation in (29) is taken over a heavy-tailed distribution, and is essential for solving the endogenous g(t),
truncations can have a significant bias if z̄ is too small. In particular, if you change the θ radically or conditions
which lead to large changes in g(t), you should verify that the analytical and numerical steady states do not become
too different.

9See Rackauckas and Nie (2017) for more on the Julia ODE and DAE packages. We use the SUNDIALS DAE
solver from Hindmarsh et al. (2005).

10While we have an analytical solution in this specific case, it is better to use the numerical solution for the
steady-state since it is the steady-state of the DAE for a given grid.

11In fact, we suspect that this approach to be extremely fast and robust for most models. Part of the difficulty in
solving our setup is that models with endogenously determined growth rates have peculiarities which lead to extra
sensitivity in numerical solutions.

6

http://docs.juliadiffeq.org/latest/tutorials/dae_example.html
http://docs.juliadiffeq.org/latest/tutorials/dae_example.html


The iteration begins with an (irregular) grid of time-stops for a large terminal time T . Instead
of guessing the Ω(t) directly, we guess a sequence of Ê on all of the time-stops such that Ω(0) = Ω0

and Ω(T ) = ΩT when integrated, where the Ê are mapped to the E and Ω through Section 2.2.

1. Solve for the steady states for the time 0 and time T to find Ω0,ΩT , and the terminal solution
for v(T ), ẑ(T ), g(T )

2. Use the current Ê guess to solve for the Ω(t) function from Section 2.2. This maps to a
function such that the known boundary conditions Ω(0) = Ω0 and Ω(T ) = ΩT are fulfilled

3. Solve the underlying DAE treating the Ω(t) as exogenous with the same basic algorithm as
the simple model.

• The additional algebraic variables are g,E, ẑ where the E is used in all calculations
instead of the guessed Ê. In particular, the L̂(t) calculation.

• The system becomes a DAE with: the ODE, the value-matching condition, the export
threshold, and the free-entry condition (i.e., of length P + 3).

4. Extract the E(t) exactly at the time-stops used in the Ê guess from the DAE solution

5. Convert the E(t) to an implied Ê(t) by subtracting δ and then rescaling so that Ê(0) = −1
and Ê(T ) = 0.

6. This final step makes the process a fixed point in the Ê guess on the interior.

7. Iterate the fixed point mapping with Anderson acceleration, and stop the iteration when Ê
converges.

Transition Dynamics Experiment Assume δ > 0. The experiment is to examine a one-time
unanticipated decrease in d as the trade liberalization. We calculate the two steady states and
examine the transition dynamics.

To evaluate the kernel of the DAE at a given t, we need to calculate ρ̃(t), πmin(t), ẑ(t), etc as
a function of g(t), ẑ(t),Ω(t), and parameters. As a simplification, we will assume that the cost
of adoption is in labor, i.e., η = 0, so that x(t) = ζ for all t from (PTW H.11).12 The other
simplification will be to assume log utility, so that γ = 1, resulting in a slightly more manageable
calculation of interest rates.

12Otherwise, there is an addition system of implicit equations to solve.

7



2.1 Static Calculations and Definitions

Let E(t)Ω(t) be the associated gross entry flow at time t and Ω(t) the number of varieties. Then use
a given g(t), ẑ(t), and L̃(t+∆t) for some small ∆t to calculate the static equilibrium conditions,13,.14

S(t) ≡ θ
(
g(t)− µ− θυ

2

2

)
(32)

1− L̃(t) ≡ 1− Ω(t)
(

(N − 1)ẑ−θκ+ ζ (S(t) + E(t)/χ)
)

(33)

L̃x(t) = Ω(t)(N − 1)ẑ−θκ (34)

L̃E(t) =
ζ

χ
Ω(t)E(t) (35)

L̃a(t) = ζΩ(t)S(t) (36)

z̄(t) ≡
(

Ω(t)
θ

1 + θ − σ

(
1 + (N − 1)d1−σ ẑσ−1−θ

)) 1
σ−1

(37)

π̄min(t) ≡ 1− L̃(t)

(σ − 1)z̄(t)σ−1
(38)

π(z, t) ≡ π̄min(t)
(
1 + (N − 1)d1−σ1 {z ≥ log(ẑ(t))}

)
− (N − 1)κe−(σ−1)z1 {z ≥ log(ẑ(t))} (39)

ρ̃(t) ≡ ρ+ δ + ∂t log
(

1− L̃(t)
)

︸ ︷︷ ︸
≡r̃(t)

−(σ − 1)

(
µ− g(t) + (σ − 1)

υ2

2

)
. (40)

To calculate the ∂t log
(

1− L̃(t)
)

we need to reference the “future” L̃(t+ ∆t). That is,

∂t log
(

1− L̃(t)
)
≈

log
(

1− L̃(t+ ∆t)
)
− log

(
1− L̃(t)

)
∆t

, (41)

where the ∆t is that periods (potentially adaptive) step-size in the time-stepping algorithm of the
DAE solver. Since the algorithm solves the transition dynamics backwards, this can be done using
the previous (i.e., future) timestep, and then forward first-differences for a given L̃(t). Alternatively,
given a sequence of L̃(t), it can be calculated afterwards as part of an iterative step.

2.2 Number of Varieties and Entry in Transition

When making a guess for the varieties over the transition path, in principle we could have chosen
either the Ω(t) or the E(t) (for t ∈ [0, T ]) and converted between them using (C.47).15 Analytically,
we know that any guess for E(t) on t ∈ [0, T ] is one where E(T ) = δ and where Ω(T ) = ΩT from the
new steady state. Since choosing a guess on an E(t) which fulfills these conditions is difficult, we
instead do the change of variables to guess a Ê(t) such that Ê(T ) = 0, where Ê(0) is indeterminate
and can be rescaled. See Appendix C.3 for the detailed derivation.

13See Appendix C.5 for a derivation of the interest rates, and Appendix C.2 for a derivation of the normalized
profits.

14Note: the ẑ(t) is not taken with a log, unlike the z. Hence, to see if a firm exports, we need to check if
z ≥ log(ẑ(t)). Furthermore, it means that the ẑ has a minimum value of 1. This decision was taken simply to make
comparison to the main paper algebra clearer.

15In practice, though, the model does not solve effectively with guesses on Ω(t) since small changes in the guess
can lead to large deviations in E(t), which enter the growth calculations directly.

8



Given the guess on Ê(t), and assuming that Ê(t) is not 0 throughout, first calculate the scaling
constant16

Q = log

(
ΩT

Ω0

)(∫ T

0
Ê(t)dt

)−1

. (42)

Then map to the E(t) and Ω(t) with the following equation and differential equation

E(t) = QÊ(t) + δ (43)

∂tΩ(t) = QÊ(t)Ω(t). (44)

In practice, since the guess Ê(0) is arbitrary and simply changes the scale of Q used to map to
E(t), it will be helpful to set it to a single number between iterations. Here we maintain Ê(0) = −1
at each iteration.

2.3 DAE for the Full Solution

The dynamic set of differential equations (rescaled) is derived in Appendix C and is very similar
to the simple model.

∂tv(z, t) = A(t)v(z, t)− π(z, t) (45)

A(t) ≡ ρ̃(t)− (µ− g(t) + (σ − 1)υ2)∂z −
υ2

2
∂zz (46)

v(0, t) =

∫ z̄

0
v(z, t)

eσ−1F ′(z)

F (z̄)
dz − ζ (47)

0 = (σ − 1)v(0, t) + ∂zv(0, t) (48)

0 = (σ − 1)v(z̄, t) + ∂zv(z̄, t) (49)

With the export threshold

0 = ẑ(t)σ−1 − κdσ−1π̄min(t)−1 (50)

And free-entry condition

0 = v(0, t)− ζ 1− χ
χ

, if E(t) > 0 (51)

As described in the solution to the simple model, when the normalization is undone, the artificial
z̄ boundary used for the discretization is growing at the same speed as the economy and does create
a fixed finite-support which would prevent long-run growth.

2.4 Dynamic Equations and Discretization

To discretize the DAE system presented in Section 2.3, define the operator, in a way similar to (19)

A(t) ≡ ρ̃(t)I − (µ− g(t) + (σ − 1)υ2)L−1 −
υ2

2
L2. (52)

16In the case of checking if the model solves transition dynamics without solutions (i.e., when E(t) = δ is the
solution), this assumption is not an issue due to the indeterminancy. As long as there is any guess other than flat,
Q = 0 comes out as the scaling factor, which solves the solution perfectly.

9



As before, this operator implement the boundary conditions in the discretized operator to get the
system of ODEs,

v′(t) = A(t)v(t)− π(t). (53)

The three algebraic variables required in the DAE are g(t), ẑ(t), and Ω(t). The (C.38) value
matching equation uses the same discretization approach as in the simple example (combining
everything into the weights ω, with the truncated exponential distribution, etc.)

0 = Ξ1v1(t)− ω · v(t) + ζ. (54)

The export threshold equation is

0 = ẑ(t)σ−1 − κdσ−1π̄min(t)−1. (55)

From Appendix C.4, we see that the free-entry condition is

Ξ1v1(t)− ζ 1− χ
χ
≤ 0, = 0 if E(t) > 0. (56)

Final Calculations Some additional calculations useful for analyzing the model, but not required
for the intermediate calculations are

λii(t) =
1

1 + (N − 1)ẑ(t)σ−1−θd1−σ (57)

c(t) = (1− L̃(t))z̄(t) (58)

logM(t) =

∫ t

0
g(s)ds (59)

U(t) =

∫ T−t

0
e−ρτ (logM(t+ τ) + log c(t+ τ)) dτ +

e−ρ(T−t)

ρ2
((1 + ρ(T − t))g(T ) + ρ (log c(T ) + logM(T )))

(60)

π̄rat(t) = θ
1− ẑ(t)−θ+σ−1

θ − σ + 1
+ (1 + (N − 1)d1−σ)θ

ẑ(t)−θ+σ−1

θ − σ + 1
+ (N − 1)

κ

π̄min(t)
ẑ(t)−θ (61)

=
θ

1 + θ − σ
+ (N − 1)d1−σ (σ − 1)ẑσ−1−θ

1 + θ − σ

The calculation of the consumption equivalent ratio, useful to compare the U(0) from above to an
alternative Uold(0)) is

MCE = exp
(
ρ(U(0)− Uold(0))

)
. (62)

In the above cases, given the interpolated solutions of the problem, we can use any quadrature
method, including pre-built libraries, to calculate the integrals since they are only evaluated after
the rest of the solution is complete.

10



Appendix A Discretization

A.1 Spatial Discretization

This will discretize space with backward differences in the first derivative, and central in space for
the 2nd derivative.17 After discretizing the spatial dimension, we have a system of ODEs in time -
which are solved using various time-stepping algorithms.

• Define an irregular grid {zi}P+1
i=0 with z0 = 0 and zP+1 = z̄ is a “large” number (keeping in

mind that the effective number is ez̄). After discretizing, we will denote the grid with the
variable name, i.e., z ≡ {zi}P+1

i=0 .

• Denote the distance between the grid points as the backwards and forwards difference respec-
tively

∆i,− ≡ zi − zi−1, for i = 1, . . . , P + 1 (A.1)

∆i,+ ≡ zi+1 − zi, for i = 0, . . . , P (A.2)

• Define the vector of backwards and forwards first differences (padding with 0s) as

∆− ≡
[

0
diff(z)

]
∈ RP+2 (A.3)

∆+ ≡
[
diff(z)

0

]
∈ RP+2 (A.4)

• The grid on time t ∈ [0, T ] may be adaptive, and we will let the ODE solver handle the grid
in order to use optimal time-stepping algorithms.

• Denote time-varying functions on the grid as a vector without the spatial dimension (on the
interior of the domain), i.e.,

v(t) ≡ {v(zi, t)}Pi=1 ∈ RP (A.5)

π̂(t) ≡ π̂(z, t) ∈ RP (A.6)

A.2 Boundary Extrapolation

Note in the above definition, v(t) ∈ RP and hence is not evaluated at the boundaries. In the case
of boundary points in the discretized model, define v0(t) ≡ v(z0, t) and vP+1(t) ≡ v(zP+1, t).

Given a solution for v(t), we can extrapolate to find the function at the boundaries v0(t) and
vP+1(t) by using the boundary conditions from the PDE. In the case of the boundary conditions
in (B.10) and (B.11), substitute in the first differences (forward and backwards, respectively) and
use the z grid

ξv(z0, t) +
v(z1, t)− v(z0, t)

z1 − z0
= 0 (A.7)

ξv(zP+1, t) +
v(zP+1, t)− v(zP , t)

zP+1 − zP
= 0 (A.8)

17Under a g(t) > γ assumption (which may be a general requirement on parameter restrictions), the drift is
negative, and the correct “upwind” finite difference scheme is always backwards.

11



Rearrange and use definitions of the vectors to find expressions for the extrapolation as linear
functions of the interior nodes

v0(t) = Ξ1v1(t) (A.9)

vP+1(t) = ΞP vP (t) (A.10)

Where,

Ξ1 ≡
1

1− ξ∆0,+
(A.11)

ΞP ≡
1

1 + ξ∆P+1,−
(A.12)

A.3 Discretized Operators

For completeness: From https://github.com/QuantEcon/SimpleDifferentialOperators.jl/

releases/download/dev/discretized-differential-operator-derivation.pdf the discretiza-
tions for first and second derivatives with the irregular grid are (where ξ = ξ̄ = σ − 1)

L−1 ≡


∆−1

1,−[1+(−1+ξ∆1,−)]−1 0 0 ... 0 0 0

−∆−1
2,− ∆−1

2,− 0 ... 0 0 0

...
...

...
. . .

...
...

...
0 0 0 ... −∆−1

P−1,− ∆−1
P−1,− 0

0 0 0 ··· 0 −∆−1
P,− ∆−1

P,−

 (A.13)

L2 ≡ 2


Ξ1 (∆1,++∆1,−)−1∆−1

1,+ 0 ··· 0 0 0

...
. . .

. . .
. . .

. . .
...

...
0 ··· (∆i,++∆i,−)−1∆−1

i,− −∆−1
i,−∆−1

i,+ (∆i,++∆i,−)−1∆−1
i,+ ··· 0

...
...

...
. . .

. . .
. . .

...
0 0 0 ··· 0 (∆P,++∆P,−)−1∆−1

P,− ΞP


(A.14)

where,

Ξ1 ≡ −(−1 + ξ∆1,−)−1(∆1,+ + ∆1,−)−1∆−1
1,− (A.15)

ΞP ≡ (1 + ξ̄∆P,+)−1(∆P,+ + ∆P,−)−1∆−1
P,+ (A.16)

Appendix B Derivations for Simple Model

B.1 Equations Prior to Rescaling

From the technical appendix of Benhabib et al. (2017) (but renaming the v function to be v̂ here
to avoid confusion with our normalization), assume an exogenously given π̂(z, t) and x(t) function.
We will only look at examples where F (z) = 1− e−θz for all t.

(r − g(t))v̂(z, t) = π̂(z, t) + (µ− g(t))∂z v̂(z, t) +
υ2

2
∂zz v̂(z, t) + ∂tv̂(z, t) (B.1)

v̂(0, t) =

∫ ∞
0

v̂(z, t)F ′(z)dz − x(t) (B.2)

∂z v̂(0, t) = 0 (B.3)

12

https://github.com/QuantEcon/SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.pdf
https://github.com/QuantEcon/SimpleDifferentialOperators.jl/releases/download/dev/discretized-differential-operator-derivation.pdf


A solution to this problem is a g(t) and v̂(z, t) that fulfills the above equations for all t ∈ [0, T ]
and z ∈ [0,∞). While not listed above, in practice another boundary condition (e.g. transversality)
is used to ensure that (B.1) can be solved. For this problem, an artificial reflecting barrier at a
“large” z̄ converges to the correct solution. Again, keep in mind that for the pre-normalized
solution, this artificial threshold is growing with the economy, and does not actually impose a
bounded distribution (i.e., Z̄(t) = M(t)ez̄).

Use the boundary value18

∂z v̂(z̄, t) = 0 (B.4)

B.2 Change of Variables to Normalize and Rescale

Solving (B.1) for v̂(z, t) on a grid is problematic since the scale goes from approximately 1 to ez̄,
which is very large for a high z̄. To make the solution more stable, we rescale the equation. Choose
some ξ ≥ 0 for convenience and to ensure stability and let

v(z, t) ≡ e−ξz v̂(z, t) = e−ξz
V (ezM(t), t)

M(t)
(B.5)

Differentiate and reorganize this expression to yield

∂z v̂(z, t) = eξz (ξv(z, t) + ∂zv(z, t)) (B.6)

∂zz v̂(z, t) = eξz
(
ξ2v(z, t) + 2ξ∂zv(z, t) + ∂zzv(z, t)

)
(B.7)

∂tv̂(z, t) = eξz∂tv(z, t) (B.8)

Define π(z, t) = e−ξzπ̂(z, t) so that if π̂(z, t) = eξz then π(z, t) = 1. Substitute into (B.1), divide
by eξz and simplify,

(
r − g(t)− ξ(µ− g(t))− υ2

2
ξ2

)
v(z, t) = π(z, t) + (µ+ υ2ξ − g(t))∂zv(z, t)

+
υ2

2
∂zzv(z, t) + ∂tv(z, t) (B.9)

Now, substitute into the boundary conditions (B.3) and (B.4) to find,

ξv(0, t) + ∂zv(0, t) = 0 (B.10)

ξv(z̄, t) + ∂zv(z̄, t) = 0 (B.11)

Finally, in the value matching condition, v̂(0, t) = e0v(0, t) where if the F ′(z) = θe−θz then,

v(0, t) =

∫ ∞
0

v(z, t)
(
eξzF ′(z)

)
dz − x(t) (B.12)

However, for the numerical approximation with the artificial boundary at z̄, we need to use a
truncated distribution for F (z). Since the support of F (z) is [0,∞), and we truncate at z̄ = z̄ then
the equation in (B.12) becomes

v(0, t) =

∫ z̄

0
v(z, t)

(
eξz

F ′(z)

F (z̄)

)
dz − x(t) (B.13)

18Keep in mind that this is just a step in the numerical solution, rather than introducing a true reflecting barrier.
We will need to verify that it does not introduce issues by verifying the numeric solution matches the closed form
solution for large z̄ and compare to the analytic equation for external validity. Also note that if υ = 0, due to the
upwind procedure this boundary value would be unnecessary and/or drop out of the solution.

13



B.3 Quadrature

With the discretized grid, the integral in (B.13) will be calculated with some quadrature rules.19

Recall that with a grid on z we have that z0 ≡ 0 and zP+1 ≡ z̄. Define Let q ≡ {q(zi)}P+1
i=0 for some

function q(·), then a quadrature rule are weights ω̄ ∈ RP+2 such that∫ z̄

0
q(z)dz ≈ ω̄ · q (B.14)

To derive the non-uniform trapezoidal rules for an arbitrary q function,∫ z̄

0
q(z)dz ≈ 1

2

P∑
i=0

(zi+1 − zi)(q(zi) + q(zi+1)) (B.15)

Use the forward difference ∆i,+ ≡ zi+1 − zi, and rearrange

=
1

2
((0 + ∆0,+)q(z0) + (∆0,+ + ∆1,+)q(z1) + . . . (∆P−1,+ + ∆P,+)q(zP ) + (∆P,+ + 0)q(zP+1))

(B.16)

Since ∆i,+ = ∆i+1,− for all i = 1, . . . P

=
1

2
((0 + ∆0,+)q(z0) + (∆1,− + ∆1,+)q(z1) + . . . (∆P,− + ∆P,+)q(zP ) + (∆P+1,− + 0)q(zP+1))

(B.17)

Finally, use the ∆− and ∆+ as defined from (A.3) and Appendix A.1 (note the use of a padding 0
in those definitions) and group to find∫ z̄

0
q(z)dz ≈ ω̄ · q (B.18)

Where,

ω̄ ≡ 1

2
(∆− + ∆+) ∈ RP+2 (B.19)

Moving to the specific integral in (B.13),∫ z̄

0
v(z, t)

(
eξz

F ′(z)

F (z̄)

)
dz ≈

P+1∑
i=0

ω̄ie
ξzi
F ′(zi)

F (z̄)
v(zi, t) (B.20)

With this, define the ω ∈ RP weights to combine the ω̄ and the
(
eξz F

′(z)
F (z̄)

)
terms, and use (A.9)

and (A.10) so that

ωi ≡


Ξ1ω̄0e

ξz0 F
′(z0)
F (z̄) + ω̄1e

ξz1 F
′(z1)
F (z̄) for i = 1

ω̄ie
ξzi F

′(zi)
F (z̄) for i = 2, . . . P − 1

ω̄P e
ξzP F

′(zP )
F (z̄) + ΞP ω̄P+1e

ξzP+1 F
′(zP+1)
F (z̄) for i = P

(B.21)

Then with the discretized vector v(t) ∈ RP , the integral in (B.13) becomes,

Ξ1v1(t) = ω · v(t)− x(t) (B.22)
19An issue here is that the support of the integral is infinite, but the finite differences go to z̄. While not ideal,

since F ′(z̄)→ 0 rapidly, the Trapezoidal rule should be a reasonable approximation.

14



Appendix C Derivations of Full Model

C.1 Static Objects and Algebraic Solution

Note that we have the following static calculations from PTW (H.1) to (H.11)

F (z) = 1− z−θ (C.1)

S = θ

(
g − µ− θυ

2

2

)
(C.2)

ν ≡ µ− g
υ2

+

√(
g − µ
υ2

)2

+
r − g
υ2/2

(C.3)

a =
1

r − g − (σ − 1)(µ− g + (σ − 1)υ2/2)
(C.4)

b = (1− a(r − g))d1−σ ẑν+σ−1 (C.5)

r = ρ+ γg + δ (C.6)

L̃ = Ω[(N − 1)ẑ−θκ+ (1− η)ζ(S + δ/χ)] (C.7)

L̃x = Ω(N − 1)ẑ−θκ (C.8)

L̃E =
ζ

χ
Ωδ (C.9)

L̃a = ζΩS (C.10)

z̄ ≡
[
Ω

θ

1 + θ − σ

(
1 + (N − 1)d1−σ ẑσ−1−θ

)]1/(σ−1)

(C.11)

ẑ = d

(
κ

π̄min

) 1
σ−1

(C.12)

w =
σ − 1

σ
z̄ (C.13)

x = ζ(1− η + ηΘ/w) (C.14)

c = (1− L̃)z̄ (C.15)

Ū =

{
ρ log(c)+g

ρ2 , γ = 1
1

1−γ
c1−γ

ρ+(γ−1)g otherwise
(C.16)

Note also that the following formula for the ratio of aggregate to minimum profits, PTW (31),
holds in steady state:

π̄rat ≡

(
θ + (N − 1)(σ − 1)d−θ

(
κ
ζ

χ
ρ(1−χ)

)1− θ
σ−1

)
1 + θ − σ

(C.17)

Or:

π̄rat =
θ

1 + θ − σ
+ (N − 1)d1−σ (σ − 1)ẑσ−1−θ

1 + θ − σ
The above gives us a system of three nonlinear equations to solve:

15



x

π̄min
= a

χ

1− χ
σ + ν − 1

ν
, (C.18)

1 +
σ − 1

ν
=

ν(n−1)(θ−σ+1)(d1−σ(θ+ν)ẑ−θ+σ−1−bθẑ−θ−ν)
a(g−r) +θ(ν(n−1)d1−σ(θ+ν)ẑ−θ+σ−1+(ν+σ−1)(θ+ν−σ+1))

ν(θ+ν)(θ−σ+1)
− χ

1−χ
σ+ν−1
ν

,

(C.19)

π̄min = 1−L̃
(σ−1)z̄σ−1 . (C.20)

C.2 Normalization and Rescaling

Note: unlike the main paper we have z ≡ log(Z/M(t)) throughout these notes. The value is

normalized as v̂(z, t) = V (ezM(t),t)
M(t)w(t) . With this,

V (Z, t) := w(t)M(t)v̂(t, log(Z/M(t))) (C.21)

Differentiate (C.21) with respect to t, divide by w(t)M(t), and use the definitions z := log(Z/M(t)), g(t) :=
M ′(t)/M(t) and gw(t) := W ′(t)/W (t)

1

w(t)M(t)
∂tV (Z, t) = (g(t) + gw(t)) v̂(z, t)− g(t)∂z v̂(z, t) + ∂tv̂(z, t) (C.22)

Similarly, differentiate (C.21) with respect to Z,

1

w(t)M(t)
∂ZV (Z, t) =

1

Z
∂z v̂(z, t) (C.23)

1

w(t)M(t)
∂ZZV (Z, t) =

1

Z2
(∂zz v̂(z, t)− ∂z v̂(z, t)) (C.24)

Take the unnormalized Bellman equation from the paper, repeated below,

r(t)V (Z, t) = Π(Z, t) +

(
µ+

υ2

2

)
Z ∂ZV (Z, t) +

υ2

2
Z2∂ZZV (Z, t) + ∂tV (Z, t),

(C.25)

Use π(z, t) ≡ Π(Z,t)
w(t)M(t) with the new z, divide (C.25) by w(t)M(t) and then use (C.22) to (C.24) to

find,

(r(t)− g(t)− gw(t))v̂(z, t) = π(z, t) + (µ− g(t))∂z v̂(z, t) +
υ2

2
∂zz v̂(z, t) + ∂tv̂(z, t) (C.26)

The smooth pasting condition, ∂ZV (M(t), t) = 0 becomes

∂z v̂(0, t) = 0 (C.27)

Take the value matching condition from the paper and divide by M(t)w(t),

V (M(t), t)

M(t)w(t)
=

∫ ∞
M(t)

V (Z, t)

M(t)w(t)
φ(Z, t)dZ − X(t)

M(t)w(t)
(C.28)

16



Substitute for v̂(z, t) and x(t) ≡ X(t)
M(t)w(t) ,

v̂(0, t) =

∫ ∞
0

v̂(log(Z/M(t)), t)φ(Z, t)dZ − x(t) (C.29)

With a change of variables in the integral to z = log(Z/M(t)),

v̂(0, t) =

∫ ∞
0

v̂(z, t)f(z, t)dz − x(t) (C.30)

We will only solve versions of the model starting from the steady-state normalized distribution
of the GBM process, which is a Pareto distribution with tail index θ and minimum M(t). If
φ(Z, t) = θM(t)θZ−(1+θ) then

f(z) = θe−θz (C.31)

for all t. It can be proven that this will be maintained by the KFE in the setup for any g(t)
sequence.

While this transformation could be done all at once, we will base it off of the previous section
for easier comparison. Define the following

v(z, t) ≡ e−(σ−1)z v̂(z, t) (C.32)

π(z, t) ≡ e−(σ−1)zπ̂(z, t) (C.33)

Rearrange and differentiate (C.32),

∂tv̂(z, t) = e(σ−1)z∂tv(z, t) (C.34)

∂z v̂(z, t) = e(σ−1)z ((σ − 1)v(z, t) + ∂zv(z, t)) (C.35)

∂zz v̂(z, t) = e(σ−1)z
(
(σ − 1)2v(z, t) + 2(σ − 1)∂zv(z, t) + ∂zzv(z, t)

)
(C.36)

And at the adoption threshold, from (C.35)

∂z v̂(0, t) = (σ − 1)v(0, t) + ∂zv(0, t) (C.37)

To use these substitutions, start with (C.30) and use the definition of f(z),

v(0, t) = θ

∫ ∞
0

v(z, t)e(−θ+σ−1)zdz − x(t) (C.38)

Combine (C.27) and (C.37) to get

0 = (σ − 1)v(0, t) + ∂zv(0, t) (C.39)

Finally, substitute all of the derivatives into (C.26) and divide by e(σ−1)z

ρ̃(t)v(z, t) = π(z, t) + (µ− g(t) + (σ − 1)υ2)∂zv(z, t) +
υ2

2
∂zzv(z, t) + ∂tv(z, t) (C.40)

Where,

ρ̃(t) ≡ r(t)− g(t)− gw(t)− (σ − 1)

(
µ− g(t) + (σ − 1)

υ2

2

)
(C.41)

17



From (PTW.C.26 to C.28) using the z ≡ log(Z/M(t)) definition,

π̂(z, t) = πmin(t)e(σ−1)z
(
1 + (N − 1)d1−σ1 {z ≥ log(ẑ(t))}

)
− (N − 1)κ1 {z ≥ log(ẑ(t))} (C.42)

Multiply by e−(σ−1)z to get,

π(z, t) ≡ π̄min(t)
(
1 + (N − 1)d1−σ1 {z ≥ log(ẑ(t))}

)
− (N − 1)κe−(σ−1)z1 {z ≥ log(ẑ(t))} (C.43)

To calculate the profitability ratio of the mean-to-min firm, take from PTW (24) – keeping in
mind the change in notation to z = log(Z/M(t))

π̄rat(t) =
1

π̄min

∫ ∞
0

π̂(z)f(z)dz (C.44)

Use (C.42) and split the integral

=

∫ log(ẑ(t))

0
e(σ−1)zf(z)dz + (1 + (N − 1)d1−σ)

∫ ∞
log(ẑ(t))

e(σ−1)zf(z)dz + (N − 1)
κ

π̄min(t)

∫ ∞
log(ẑ(t))

f(z)dz

(C.45)

Use (C.31) and simplify

= θ
1− ẑ(t)−θ+σ−1

θ − σ + 1
+ (1 + (N − 1)d1−σ)θ

ẑ(t)−θ+σ−1

θ − σ + 1
+ (N − 1)

κ

π̄min(t)
ẑ(t)−θ (C.46)

=
θ

1 + θ − σ
+ (N − 1)d1−σ (σ − 1)ẑσ−1−θ

1 + θ − σ

C.3 Computation of equilibrium Ω(t) and E(t)

Recall that E(t) is the gross entry flow is E(t)Ω(t). Since the gross exit flow is δΩ(t), then the
differential equation for Ω(t) comes from the net flows,

∂tΩ(t) = (E(t)− δ) Ω(t) (C.47)

Which shows that in the steady-state, the entry must simply replace exogenous exit, E(t) = δ for
t ≥ T .

First, note that Ω(t) is defined by the solution of the differential equation ∂tΩ(t) = (E(t)− δ) Ω(t)
from (C.47) with boundary conditions of Ω(0) = Ω0 and Ω(T ) = ΩT where Ω0 and ΩT are the sta-
tionary solutions for Ω(t) at t = 0 and t = T respectively. Hence, it suffices to find the equilibrium
E(t). On the other hand, note that in steady-state we must have E(t) = δ. In the computation,
we use cubic splines with nodes that are uniformly distributed across [0, T ].

To find the equilibrium E(t), we first find Ê(t) with an arbitrary endpoint on [0, T ] and rescale
Ê(t) by Q

QÊ(t) = E(t)− δ (C.48)

such that QÊ(T ) = δ. Substituting (C.48) in (C.47), we have

∂tΩ(t) = QÊ(t)Ω(t) (C.49)

18



Solving for Ω(t), we have

ΩT = Ω0 exp

(
Q

∫ T

0
Ê(t)dt

)
(C.50)

Which yields

Q = log

(
ΩT

Ω0

)(∫ T

0
Ê(t)dt

)−1

(C.51)

providing the analytic solution for E(t) and Ω(t) given Ê(t) with arbitrary endpoints.

C.4 Free-entry Condition

To determine the E(t) function, we need the free entry complementarity condition to hold. Note
that (PTW D.19) actually holds for any t as well, and does not require the stationary solution.
From (PTW D.19) and using v(t, 0) = v̂(t, 0), we see that if E(t) > 0 then,

v(t, 0) = ζ
1− χ
χ

(C.52)

In the case that there is no entry, and E(t) = 0 for some t, from (PTW D.18)

v(t, 0) < ζ
1− χ
χ

(C.53)

C.5 Derivation of Rates of Change and Interest Rates

Since consumption is C(t) := c(t)M(t), take logs and differentiate to get,

∂t logC(t) = g(t) + gc(t) (C.54)

With a CRRA parameter of γ ≥ 0, the interest rate rate faced by a firm is,

r(t) = ρ+ δ + γ∂t logC(t) (C.55)

= ρ+ δ + γ(gc(t) + g(t)) (C.56)

From the PTW (C.34), for η = 0,

c(t)

w(t)
∝ 1− L̃(t) (C.57)

Take the log and differentiate,

gc(t)− gw(t) = ∂t log
(

1− L̃(t)
)

(C.58)

Define,

r̃(t) ≡ r(t)− g(t)− gw(t) (C.59)

From (C.56)

= ρ+ δ + γ(gc(t) + g(t))− g(t)− gw(t) (C.60)

= ρ+ δ + (gc(t)− gw(t)) + (γ − 1)(gc(t) + g(t)) (C.61)

19



From (C.58)

= ρ+ δ + ∂t log
(

1− L̃(t)
)

+ (γ − 1)(gc(t) + g(t)) (C.62)

And in the log utility case with γ = 1, the last term drops, so that we have,

r̃(t) = ρ+ δ + ∂t log
(

1− L̃(t)
)

(C.63)

C.6 Derivations of Cutoffs and Profits

From (PTW H.11), the adoption cost relative to wages remains constant throughout the transition
(i.e., assumed η = 0):

x(t) = ζ (C.64)

For the components of aggregate profits, we need to find πmin(t). In order to solve for the static
ẑ(t) condition, we will leave it as a variable in the equations. Start with (PTW C.26)

πmin(t) =
1− L̃(t)

(σ − 1)z̄(t)σ−1
(C.65)

From (PTW C.19), along the transition dynamics E(t) is left general

L̃(t) = Ω(t) [(N − 1)(1− F (ẑ(t)))κ+ ζ (S(t) + E(t)/χ)] (C.66)

= Ω(t)
(

(N − 1)ẑ−θκ+ ζ (S(t) + E(t)/χ)
)

(C.67)

From (PTW C.10)

z̄(t) =
[
Ω(t)

(
E
[
zσ−1

]
+ (N − 1)(1− F (ẑ(t)))d1−σE

[
zσ−1

∣∣ z > ẑ(t)
])] 1

σ−1 (C.68)

=

[
Ω(t)

θ

1 + θ − σ

(
1 + (N − 1)d−θ

(
ẑ

d

)σ−1−θ
)] 1

σ−1

(C.69)

(C.70)

Hence,

z̄(t)σ−1 = Ω(t)
θ

1 + θ − σ

(
1 + (N − 1)d1−σ ẑσ−1−θ

)
(C.71)

Use (PTW C.29)

ẑ(t) = d
(

κ
π̄min(t)

) 1
σ−1

(C.72)

Reorganize (C.72) to find an implicit equation in ẑ at every t,

0 = ẑσ−1 − κdσ−1π̄min(t)−1 (C.73)

20



Note that (C.73) provides an implicit equation in ẑ(t) given an exogenous Ω(t) and g(t) and (C.66),
and can be solved separately for each t. From the implicit ẑ(t), calculate the home trade share
through (PTW C.47),

λii(t) =
1

1 + (N − 1)ẑ(t)σ−1−θd1−σ (C.74)

Use (PTW C.49) to calculate,

π̄min(t) =
(N − 1)ẑ(t)−θκ

1− λii(t)
(C.75)

C.7 Welfare Calculations

Assume that there is a T > 0 such that the equilibrium reaches a steady state. Given that
g(t) ≡ ∂t logM(t). With this,

M(t) = M(0)×

exp
(∫ t

0 g(s)ds
)

if 0 ≤ t ≤ T

exp
(∫ T

0 g(s)ds+ (t− T )ḡ
)

t ≥ T
(C.76)

Assume wlog that M(0) = 1, then,

logM(t) =

∫ t

0
g(s)ds (C.77)

Intermediate Objects

Before proceeding, define the following intermediate objects (see Appendix H of PTW):

y = c = (1− L̃)z̄ (C.78)

λii =
1

1 + (N − 1)ẑσ−1−θd1−σ (C.79)

Note that y = c here because we are only solving the special case of all adoption being done with
labor (i.e., η = 0).

At the steady state, define ḡ and c̄ as the growth rate and consumption relative to real wages
for t ≥ T . The consumer welfare can be calculated as from (PTW 1),

U(t) =

∫ ∞
0

e−ρτ logC(t+ τ)dτ (C.80)

=

∫ ∞
0

e−ρτ logM(t+ τ)dτ +

∫ ∞
0

e−ρτ log c(t+ τ)dτ (C.81)

Given the convergence at time T , use (C.81) to split the welfare integral,

U(t) =

∫ T−t

0
e−ρτ (logM(t+ τ) + log c(t+ τ)) dτ +

∫ ∞
T−t

e−ρτ (logM(t+ τ) + log c(t+ τ)) dτ

(C.82)

21



Note that c(t) = c̄ for t ≥ T ,

=

∫ T−t

0
e−ρτ (logM(t+ τ) + log c(t+ τ)) dτ +

e−ρ(T−t)

ρ2
(ḡ + ρ (log c̄+ T ḡ)) (C.83)

With (PTW G.31) and (PTW G.33) and (8)

c(t) =

(
θ

1− σ + θ

) 1
σ−1 (

1− L̃(t)
)

Ω(t)
1

σ−1λii(t)
1

1−σ (C.84)

C.8 Consumption Equivalent

Note that we need to consider if M(0) 6= 1. Modify (C.77)

logM(t) = logM(0) +

∫ t

0
g(s)ds (C.85)

Hence, modifying (C.81) to get the welfare at time 0 given a M(0)

U(0;M(0)) = logM(0)

∫ ∞
0

e−ρτdτ +

∫ ∞
0

e−ρτ
(∫ τ

0
g(s)ds

)
dτ +

∫ ∞
0

e−ρτ log c(τ)dτ (C.86)

If we were in the steady state, then the second two terms are the welfare if M(0) = 1, hence,

U(0,M(0)) =
logM(0)

ρ
+ U(0, 1) (C.87)

Calculate the welfare at the steady state before the shock (which assumes a M(0) = 1), defined
as Uold(0), then calculate from (C.83) the welfare at time 0 after the shock as just realized, and
calculated as U(0), then to find the indifference level of M(0), equate

U(0) = Uold(0) +
logM(0)

ρ
(C.88)

Solve for M(0)

M(0) = exp
(
ρ(U(0)− Uold(0))

)
(C.89)

Then the M(0) should be greater than 1, and it is the inverse of the proportion of consumption
the would be willing to give up to change regimes.

For general γ (i.e., γ 6= 1), the result is:

M(0) =

(
U(0)

Uold(0)

) 1
1−γ

(C.90)

22



References

Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2017): “Income and Wealth
Distribution in Macroeconomics: A Continuous-Time Approach,” NBER Working Papers 23732,
National Bureau of Economic Research, Inc.

Benhabib, J., J. Perla, and C. Tonetti (2017): “Reconciling Models of Diffusion and Inno-
vation: A Theory of the Productivity Distribution and Technology Frontier,” Working Paper
23095, National Bureau of Economic Research.

Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward (2005): “SUNDIALS: Suite of Nonlinear and Differential/Algebraic
Equation Solvers,” ACM Trans. Math. Softw., 31, 363–396.

Rackauckas, C. and Q. Nie (2017): “DifferentialEquations. jl–a performant and feature-rich
ecosystem for solving differential equations in Julia,” Journal of Open Research Software, 5.

23


