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Abstract

Many important questions in Macro and Labor economics can only be answered using a panel of
income and consumption data. Since there is no existing joint panel in the U.S., previous papers
have developed estimation strategies to impute consumption data from the CEX to the PSID. This
paper develops an alternative Bayesian imputation algorithm that uses the full information from the
likelihood of data contained in both the PSID and CEX and provides information about the uncertainty
surrounding imputed values. Food consumption is available in both datasets, while total consumption
is only available in the CEX. Following Blundell, Pistaferri, and Preston (2006) we specify a statistical
relationship between food consumption, total consumption, and other (jointly available) covariates.
We treat an individual agent’s total consumption at time t as a latent variable and sample from the
joint posterior distribution of latent states and parameters governing the food demand equation, given
the data contained in the PSID and CEX simultaneously. This extremely high dimensional posterior
distribution imposes sampling challenges that are overcome by exploiting derivatives of the posterior
distribution using a variant of the Metropolis Adjusted Langevin Algorithm.
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1 Introduction

Many important questions in Macro and Labor economics can only be answered using a panel of income

and consumption data. One recent example is Guvenen and Smith (2014), which elicits information

about the properties and magnitude of labor income risk individuals face from their economic behavior.

With only income data, it is impossible for an econometrician to distinguish between true “shocks”

to income and anticipated changes. By using information on individual consumption and income,

Guvenen and Smith (2014) attempt to disentangle the amount of increasing life-cycle inequality due

to risk versus that due to heterogeneity in abilities. Another example is Blundell, Pistaferri, and

Preston (2008), which attempts to provide a quantitative measure of market incompleteness in the

U.S. by estimating the degree to which consumers are insured against shocks to their income. In order

to identify these partial insurance coefficients, they exploit an individual specific statistical relationship

between changes in consumption expenditure and changes in income, requiring panel data.

Unfortunately, for many countries, including the U.S., there is no existing joint panel of consump-

tion and income. Historically, many papers needing a consumption panel have used the food expen-

diture measure available in the PSID. For example, the Hall and Mishkin (1982) and Zeldes (1989)

tests of the permanent income hypothesis, the Cochrane (1991) and Hayashi, Altonji, and Kotlikoff

(1996) tests of the consumption insurance hypotheses, and the Altonji (1986) test for intertemporal

substitution in labor supply. This is obviously not ideal, as food is a neccesity, with implications for

preference elasticities and expenditure volatility that are likely not generalizable to total nondurable

consumption. One alternative is to use synthetic panels, like Attanasio and Davis (1996). There are

advantages to the synthetic cohort approach, but there are also severe drawbacks, as the researcher is

restricted to make observations about across group heterogeneity and cannot speak to within group

heterogeneity. As Krueger and Perri (2006) document, much interesting variation over time occurs

within groups.

An alternative to exclusively using the food expenditure data in the PSID, while still working

with panel data, is to impute a measure of total nondurable expenditure in the PSID. This is the

approach taken by the Guvenen and Smith (2014) and Blundell, Pistaferri, and Preston (2008) papers

mentioned previously. One imputation strategy, originally suggested by Skinner (1987), is to impute

total consumption by proposing a statistical model relating total consumption to a series of consump-

tion components available in both data sets. Skinner (1987) estimates this relationship using CEX

data and uses the model with these estimated parameters to impute total consumption in the PSID.

Building on the Skinner (1987) methodology, Blundell, Pistaferri, and Preston (2006) (hereafter BPP)

develop an estimation strategy to impute consumption data from the CEX to the PSID by using

a standard food demand function for the statistical model. Food consumption is available in both

datasets, while total consumption is only available in the CEX. BPP specify a statistical relationship

between food consumption, total consumption, and other (jointly available) covariates. They impute

total consumption in the PSID by estimating this food demand equation in the CEX and applying
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the inverted function to PSID food expenditure.1

This paper builds on the insights of Blundell, Pistaferri, and Preston (2006) by developing an

alternative Bayesian imputation algorithm that uses the full information from the likelihood of data

contained in both the PSID and CEX and provides information about the uncertainty surrounding

point estimates. In the baseline model, we estimate essentially the same statistical relationship outlined

by Blundell, Pistaferri, and Preston (2006), innovating on the estimation procedure and not the model

to be estimated. We treat an individual’s total consumption at time t as a latent variable and

sample from the joint posterior of latent states and parameters governing the food demand equation,

given the data contained in the PSID and CEX simultaneously. This extremely high dimensional

posterior distribution imposes sampling challenges that are overcome by exploiting derivatives of the

posterior distribution using a variant of the Metropolis Adjusted Langevin Algorithm. We establish

the performance of the new estimator on simulated data in Section 5.3 and in Section 5.4 we perform

the imputation on PSID and CEX data. A main finding, presented in Tables 3 and 8 is the significant

degree of uncertainty around imputed “point estimates.”

Since use of this BPP “data” is becoming increasingly popular, this uncertainty is important, as it

must be acknowledged and accounted for in any second stage estimation that uses imputed consump-

tion as “data.” In Section 6 we demonstrate how to use the posterior distribution of consumption as

imputed data in a simple example. To highlight the importance of imputation uncertainty, we analyze

the evolution of consumption inequality over time, both accounting for and ignoring uncertainty in

the imputed values. We document that ignoring imputation uncertainty leads to statistically and eco-

nomically significant errors in statistics that rely on higher moments of the consumption distribution.

Finally, this estimation strategy is broadly applicable to any imputation problem and can handle

more flexible statistical relationships, more data sources, and delivers more information on imputed

variables than existing methods. In Section 7 we outline extensions to the baseline model and sampling

algorithm that are designed to improve the quality of the imputed values.

2 Imputation: Model and Data

Imputation is the statistical process of replacing missing data with alternative values. There are many

approaches to imputing missing data, with a correspondingly rich literature. In this paper, we focus

on a particular structure for the imputation problem and provide a Bayesian approach to estimating

the missing observations.2 In our baseline scenario, there are two data sets and in data set 1, there

are enough observations to estimate a useful statistical relationship. However, data set 2 is missing

some of the variables in this statistical relationship. The problem is to extract information from the

1Blundell, Pistaferri, and Preston (2006) make additional contributions to the literature. They include relative prices
in the regression and allow the budget elasticity to shift with observable characteristics. They allow for measurement
error in consumption and for differences in food expenditure across data sources. Additionally, they examine conditions
that ensure that the procedure matches trends in the mean and variance of the consumption distribution.

2For alternative strategies to imputing consumption see approaches that rely on “active savings” and the budget
constraint identity, such as Ziliak (1998), Cooper (2010), and sections of Aguiar and Bils (2013).
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first data set to impute the missing variables in the second data set, exploiting the common statistical

relationship amongst the variables across datasets. To illustrate, separate all of the variables into

three groups: x, y, and z. Data set 1 contains observations on all variables of interest, denoted x1, y1

and z1. Data set 2 contains observations x2 and y2, but is missing observations on z2. The statistical

relationship between variables can be written as x = F (y, z, θ) and z = G(x, y, θ), with parameter

vector θ controlling the relationship. Heuristically, since data set 1 contains data on x, y, and z, model

F can be used to estimate θ. Since dataset 2 contains data on x and y, the estimated parameters, θ̂,

and model G can be used to impute values of z2.

2.1 BPP

This is exactly the set up relevant for Blundell, Pistaferri, and Preston (2006), who develop a two step

estimation strategy to impute consumption data from the CEX to the PSID. BPP specify a statistical

relationship between food consumption, total nondurable consumption, and other covariates that are

jointly available.

Let x index an observation from the CEX (the input data set) and let p index an observation from

the PSID (the target data set). Assume, as constructed, that the CEX and PSID represent random

samples drawn from the same underlying population. Consider the following food-demand equation:

τ(fi,x) = D′
i,xβ + γη(ci,x) + ei,x. (1)

f is food expenditure which is available in both surveys. D contains individual specific attributes

(such as race, education, and geographic region) and aggregate variables (such as relative prices) which

are available in both data sets. c is total non-durable expenditure which is available only in the input

data set (CEX). Finally, e captures the unobserved heterogeneity in the demand for food (including

classical measurement error in food expenditure). Assume functions τ and η are known monotonic

increasing functions (e.g., identity or ln). BPP estimate equation 1 yielding estimates β̂ and γ̂.3 Using

these estimated values, imputed consumption in the PSID is calculated by inverting the relationship

(assuming γ > 0):

ĉi,p = η−1

(
τ(fi,p)−D′

i,pβ̂

γ̂

)
. (2)

2.2 Bayesian Estimator

There are two major criteria by which to judge an imputation procedure: accuracy and efficiency. One

major drawback of the BPP imputation methodology is that it does not provide useful information

on the uncertainty surrounding the imputed values. Another problem is that the two-step procedure

3A major contribution of the BPP methodology is to augment standard OLS estimation of equation 1 to obtain
consistent estimates in the presence of measurement error in total consumption and differences in food consumption
across datasets.
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does not make the most efficient use of available data. Instead of following the imputation approach

of BPP, we develop a Bayesian estimator, treating imputation as a missing variable problem, that

directly addresses these two concerns.

The goal of Bayesian estimation is to characterize the posterior distribution of parameters, which

is defined as the distribution of parameters conditional on data, p (ϑ|Y ). The posterior distribution is

related to two objects, the prior distribution and the likelihood function, by Bayes Theorem:

p (ϑ|Y ) ∝ L(Y |ϑ)p(ϑ),

where p(ϑ) is the prior distribution of parameters, which the researcher specifies. When the prior

is uniform, the posterior is the same as the likelihood (as a function of parameters).4

To characterize the posterior distribution, the Bayesian estimator draws a large sample from the

posterior, which can be used to compute statistics about the parameters of interest. Algorithms for

sampling posterior distributions, an essential component of this paper, are discussed in detail in Section

4.

This Bayesian approach is related to the multiple imputation literature (see Rubin (1987, 1988,

1996)). The key to multiple imputation is to provide multiple imputed values, so that imputation

uncertainty, which is displayed in the differences across imputed values, can be incorporated into any

analysis that uses the imputed values. Quoting from Rubin (1988), “Multiple imputations ideally

should be drawn according to the following general scheme. For each model being considered, the M

imputations of the missing values, Ymis, are M repetitions from the posterior predictive distribution

of Ymis, each repetition being an independent drawing of the parameters and missing values under

appropriate Bayesian models for the data and the posited response mechanism.” A main goal of this

paper is to develop such a sampling procedure well-suited to the high-dimensional posterior associated

with the consumption imputation problem.

2.2.1 Efficiency

To highlight the potential efficiency gains, a useful analogy is to frame the estimation procedure as an

optimization problem. Consider the following three maximization problems:

A = max
Xp

p(Xp|Yp, θ)max
θ

p(θ|Yx),

B = max
(Xp,θ)

p(Xp|Yp, θ)p(θ|Yx),

C = max
(Xp,θ)

p(Xp, θ|Yp, Yx).

It should be immediately clear that B ≥ A. The BPP procedure mimics problem A, in that first

parameter values are estimated using only CEX data and then the best imputed value is chosen using

4See Geweke (2005) or Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2014) for a Bayesian statistics reference.
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only PSID data, taking parameter values as given. Since the statistical relationship is restricted to

be the same across datasets, there may be efficiency gains in choosing imputed values and parameter

values jointly. However, going beyond the change in the optimization procedure, problem C changes

the objective function to be a proper posterior, allowing for a natural interpretation of the exercise.

Problem C is to choose values for all the unknowns to maximize their probability, using all available

data to do so.5

2.2.2 Parameter Uncertainty

Parameters and latent states are unknowns. Following the Bayesian tradition, they are treated as

random variables, with associated distributions. There are two major advantages of using Bayesian

methods associated with parameter uncertainty. Most importantly, given draws from the posterior

distribution, we have information about the uncertainty surrounding the imputed values (e.g., the

variance of the marginal posterior distribution). This is essential information, as the entire reason for

the exercise is to obtain accurate and precise estimates of missing values, making information about

precision key to assessing the quality of the imputed data. Furthermore, with the Bayesian approach,

unobserved consumption is inferred while simultaneously acknowledging and formally accounting for

uncertainty in the values of the parameters governing the food demand equation.6

2.2.3 Statistical Model: Food Demand Equation

While we develop a Bayesian estimator designed to be flexible enough to estimate complicated sta-

tistical models, the goal of this section is to keep the statistical model close to that formulated by

BPP in order to emphasize differences in estimation methods for a given statistical relationship and

not differences in the assumed statistical relationship itself. Thus, we consider the following statis-

tical model, which stacks BPP-style food demand equations for the CEX and PSID, while explicitly

modeling measurement error in total nondurable consumption.7

5Note that we can factor problem C as follows,

C = max
(Xp,θ)

p(Xp, θ|Yp, Yx)

= max
(Xp,θ)

p(Xp|θ, Yp, Yx)p(θ|Yp, Yx).

If we assume p(Xp|θ, Yp, Yx) = p(Xp|θ, Yp), i.e., conditional on the data in data set p and a vector of parameters shared
across datasets, the distribution of Xp is independent of the data in data set x, we have

C = max
(Xp,θ)

p(Xp|θ, Yp)p(θ|Yp, Yx)

With this formulation and assumption, it is apparent that problem C explicitly uses more information (contained in Yx)
to compute an estimate of θ.

6One could, instead, attempt to compute (or approximate) the variance of an imputed consumption value using the
delta method. That is, letting θ = (β, γ) and the imputed consumption citp = gitp(θ) for the individual and time specific
function gitp(·), var(citp) ≈ ∇gitp(θ)

T var(θ)∇gitp(θ).
7It is widely acknowledged that there is significant measurement error in CEX consumption measures. Additionally, a

main emphasis of Blundell, Pistaferri, and Preston (2006) is that accounting for measurement error in total consumption
is essential to obtain consistent estimates.
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fitx = D
′

itxβ + γc∗itx + σfeitx (3)

citx = c∗itx + σcxvitx (4)

fitp = D
′

itpβ + γc∗itp + σfeitp (5)

Here, variables with subscript x denote variables in the CEX, and p, variables in the PSID. fitx

and citx, are observable food and total nondurable consumption in the CEX, and fitp is observable

food consumption in the PSID. c∗itx and c∗itp are true (unobserved) nondurable consumption. D
′

itx

and D
′

itp are observed covariates present in both data sets, and (eitx, vitx, eitp) is a (jointly) normally

distributed error term. Note the parameters are shared and not indexed by data source. For notational

convenience group variables into parameters, θ, missing variables, X, and data, Y . We have Ntx

individual observations in the CEX at time t and Tx total time periods in the CEX, with corresponding

notation for the PSID. Thus, we define Nx =
∑Tx

j=1Njx and Np =
∑Tp

j=1Njp as the total number of

observations in the CEX and PSID.

D contains all of the individual/time specific characteristics as well as the aggregate variables.

Following BPP we include: constant, age, age2, familysize, HSDropout, HSGrad, RegionNE,

RegionMW , RegionSO. RaceWhite, Cohort2529, Cohort3034, Cohort3539, Cohort4044, Cohort4549,

Cohort5054, Cohort5559, 1Child, 2Children, 3 + Children, PriceAlcohol, PriceFood, PriceFuel,

and PriceTransportation.

With equations 3, 4, and 5, we have cast the imputation problem into a traditional missing variables

problem by treating c∗itp as an unobserved latent variable. We have explicitly modeled measurement

error by treating c∗itx as an unobserved latent variable, related to measured total nondurable consump-

tion with error.

3 Prior, Likelihood, and Posterior Distributions

Our goal is to draw from the joint posterior of parameters and unobservable consumption, given the

information contained in both data sets, p(X, θ|Y ) ∝ p(Y |θ,X)p(θ,X). In order to do this, we first

derive an analytical expression for the log likelihood generated by our statistical model and then

specify priors.

In our notation, we distinguish between data, collected in Y , unobservables, collected in X, and

parameters, collected in θ. Define Xtx := {c∗itx}Ntx

i=1 , Xtp := {c∗itp}
Ntp

i=1, Ytx := {fitx,Ditx, citx}Ntx

i=1 ,

Ytp := {fitp,Ditp}Ntp

i=1, Yx := {Yt}Tx
t=1, Yp := {Yt}Tp

t=1, Xx := {Xt}Tx
t=1, and Xp := {Xt}Tp

t=1. Then,

X := (Xx,Xp), Y := (Yx, Yp), and θ := (β, σf , σcx, γ).
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3.1 Likelihood

The likelihood is

p(Y |θ,X) =

Tx∏

t=1

Ntx∏

i=1

p(fitx, citx|θ,X)

Tp∏

t=1

Ntp∏

i=1

p(fitp|θ,X). (6)

Given our assumption that fitx, citx, fitp are independent given (θ,X), and normally distributed,

p(Y |θ,X) =

(
1

2πσfσcx

)TxNx Tx∏

t=1

Ntx∏

i=1

p(êitx|θ,X)p(v̂itx|θ,X)

(
1√
2πσf

)TpNp Tp∏

t=1

Ntp∏

i=1

p(êitp|θ,X), (7)

where, given our specification,

êitx =
1

σf
(fitx − (D

′

itxβ + γc∗itx)),

v̂itx =
1

σcx
(citx − c∗itx),

êitp =
1

σf
(fitp − (D

′

itpβ + γc∗itp)).

with

p(êitx|θ,X) = N(0, 1),

p(v̂itx|θ,X) = N(0, 1),

p(êitp|θ,X) = N(0, 1).

Thus, the log likelihood is

log(p(Y |θ,X)) = −(TxNx) log (2πσfσcx)− (TpNp) log
(√

2πσf

)
(8)

−
Tx∑

t=1

Ntx∑

i=1

1

2
(ê2itx + v̂2itx)−

Tp∑

t=1

Ntp∑

i=1

1

2
ê2itp.

3.2 Prior

In choosing priors, we want to center our estimates around economically relevant areas that are per-

ceived to be likely based on previous research, but allow enough variability in the distribution to let

the posterior significantly differ from the prior as the data informs the estimates. We specify our priors

such that standard deviations are distributed according to Inverse Gamma distributions, parameters

β and γ are distributed according to normal distributions, and each nondurable consumption is dis-

tributed according to a normal distribution. We detail specific values for the prior distributions in

Section 5.2. We choose the Inverse Gamma distribution for standard deviation parameters to ensure

positivity. We choose the normal distribution to reflect symmetric uncertainty in both directions from

the mean, while ensuring a decent portion of the probability mass is in the ex ante economically

reasonable region surrounding the chosen mean.

Now that we have defined the likelihood, prior, and, thus, posterior distributions, we proceed in

Section 4 to discuss algorithms that sample from the posterior distribution.
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4 Sampling

Given the data contained in the CEX and PSID, Y, we can construct a joint posterior density of

parameters θ and unobservable states (total nondurable consumption) X: p(θ,X|Y ). This density is

a function defined in approximately 25,000 dimensions which we need to characterize succinctly. One

way to characterize a distribution is to draw samples from it. The ability to draw from a distribution

allows one to characterize any moment of that distribution, as well as expectations of any function

of random variables that are distributed according to it. We will let s denote some random variable

distributed according to a distribution, f , s ∼ f(·) with density f(s). For the inference problem at

hand, we have s = (θ,X) and and f(s) = p(θ,X|Y ). Our goal is to be able to produce a series of

draws {sm}Mm=1, each (approximately) distributed according to our target f(·). Below we outline some

common methods in the Markov chain Monte Carlo (MCMC) literature that have been proposed to

achieve this goal—Gibbs Sampling and the the Metropolis-Hastings algorithm—and outline our choice

of sampler for the problem at hand, the Metropolis-Adjusted Langevin Algorithm (MALA). MALA is

a particular implementation of the Metropolis-Hastings algorithm. Below we discuss its relative merits

compared to the more standard algorithms, as well as, potential extensions of the MALA algorithm.

Essentially, sequences of draws generated by MALA have attractive properties when sampling from

high-dimensional distributions.

4.1 Gibbs Sampling

In certain cases, it is possible to exactly compute and sample from f(sj|s1, . . . , sj−1, sj+1, . . . , sn) for

each coordinate j in the state space. It is then possible to use the Gibbs sampling algorithm to

build a Markov chain by iteratively sampling from f(sj|s1, . . . , sj−1, sj+1, . . . , sn), j = 1, . . . , n, to

produce draws s ∼ f(·). In our Bayesian context, exact sampling is typically sensitive to the use of

conjugate priors and hence is not robust to changes in the statistical model that defines f(s). In this

paper we wish to provide a general imputation framework, and, thus, we want to remain agnostic

toward the “correct” demand system that links food and total consumption. That is, we want to

avoid implementing an algorithm that is not robust to changes in the specification of the demand

system. Beyond being sensitive to the specification of particular conjugate priors, Gibbs sampling

can perform poorly when the components of s are correlated. For example, sampling an agent’s total

consumption on some date t independently of that individual’s consumption at other dates may result

in poor mixing of the Markov chain. Lastly, the performance of such an algorithm can degrade quickly

in the dimension of s and there are examples where the mixing time increases exponentially with the

dimension (e.g. the witch’s hat of Matthews (1993)). For these reasons, we choose not to implement

a Gibbs sampling algorithm for our problem.
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4.2 Metropolis-Hastings

Rather than Gibbs sampling, we can use the Metropolis-Hastings algorithm to sample from f(·). The
Metropolis-Hastings algorithm reverse engineers a Markov chain whose invariant distribution is the

distribution from which one wants to sample. The algorithm requires a proposal distribution, q(s, ·)
with density q(s, s′), and proceeds as follows. At iteration m when the state is s, denoted by sm = s,

propose s′ ∼ q(s, ·) and set sm+1 = s′ with probability

α(s, s′) = min

{
1,

f(s′)q(s′, s)

f(s)q(s, s′)

}

and sm+1 = s with probability (1−α(s, s′)). Under some regularity conditions, this algorithm produces

a Markov chain whose ergodic distribution is f(·). The generality of this algorithm can be seen by

noting that there are many proposal distributions q(s, ·) that can be used to sample from f(·). Choice
of q(s, ·) along with the properties of the target density f(s) will govern how efficiently this algorithm

generates samples from f(·).

4.2.1 Random Walk Metropolis-Hastings

One choice of proposal density starts by searching for proposal densities that satisfy q(s′, s) = q(s, s′).

This criteria, for example, is satisfied by a Normal distribution centered at the current value s, q(s, ·) =
N(s,Σ). The Metropolis-Hastings algorithm with this particular proposal density is commonly referred

to as Random Walk Metropolis-Hastings (RWMH). With q(s′, s) = q(s, s′), the acceptance probability

becomes

α(s, s′) = min

{
1,

f(s′)

f(s)

}

and draws are accepted with certainty when the target density at the proposed point rises relative to the

target density evaluated at the current point, and are accepted with probability f(s′)
f(s) when this value

decreases. This implementation of the Metropolis-Hastings algorithm has seen substantial use in the

physics, statistics, and econometrics literature. The algorithm is tuned by the choice of the covariance

matrix of the random walk proposal Σ, that when chosen optimally, should lead to an acceptance

probability of approximately 0.234 (see Roberts, Gelman, and Gilks (1997)). Such an acceptance

probability maximizes the rate at which the Markov chain generated by the RWMH algorithm explores

its invariant distribution. Usually Σ is chosen to be a scaled version of the covariance matrix of the

distribution of interest, the idea being that correlated components should be moved together. Roberts,

Gelman, and Gilks (1997) show that for i.i.d. target densities the proposal variance should scale with

n−1 and O(n) steps are needed for the RWMH chain to explore its invariant distribution.
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4.2.2 The Metropolis Adjusted Langevin Algorithm

Another choice for the proposal density of a Metropolis-Hastings algorithm is motivated by the

Langevin SDE,

dS =
1

2
∇ log(f(S))dt+ dW, (9)

where dW is Brownian motion. In steady state, this SDE has S ∼ f(·). A discretization of the

Langevin SDE is

St+1 = St +
h2

2
∇ log(f(St)) + hǫt+1, (10)

where the discretization size is ∆t = h2 and ǫt+1 ∼ N(0, I). Such a discretization would no longer have

f(·) as its invariant distribution, but as suggested by Besag (1994), we can use this discretized SDE

to generate proposals in an otherwise standard Metropolis-Hastings algorithm.8 This algorithm, the

Metropolis-Adjusted Langevin Algorithm (MALA), exploits the discretization of a Langevin SDE with

the target density f(s) and uses it as a proposal in a Metropolis-Hastings algorithm targeting the same

density. MALA proceeds as follows: for a given h, at sm = s, propose s′ = s+ h2

2 ∇ log(f(s)) + hǫt+1

and set sm+1 = s′ with probability

α(s, s′) = min

{
1,

f(s′)q(s′, s)

f(s)q(s, s′)

}

and sm+1 = s with probability (1 − α(s, s′)). The MALA algorithm can be augmented by premulti-

plying the SDE by a constant matrix Λ as in Roberts and Stramer (2002),

dS =
1

2
Λ∇ log(f(S))dt+

√
ΛdW. (11)

Then the discretized evolution equation is,

St+1 = St +
h2

2
Λ∇ log(f(St)) + h

√
Λǫt+1 (12)

where
√
Λ is the matrix square root of Λ. This preconditioning matrix Λ can be any positive definite

matrix and is typically chosen to match the (target) posterior covariance, or a diagonal matrix that

scales each dimension so that the algorithm makes proposals of relatively similar magnitude. Precon-

ditioning by a constant matrix does not alter the invariant distribution of the SDE and can improve

the sampling properties of the resulting MALA algorithm.

In our applications below, the density that we are trying to sample is the joint posterior of param-

eters and states (unobservable total nondurable consumption) given the data: f(s) = p(θ,X|Y ). Our

discretized Langevin SDE becomes the proposal distribution,

q((θ,X), ({·, ·})) = N((θ,X) +
h2

2
Λ∇ log(p(θ,X|Y )), h2Λ). (13)

8Alternatively, we can view this as correcting the discretization error by a Metropolis accept/reject step.
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For the preconditioning matrix, we use a diagonal matrix whose elements are approximations to the

inverse Hessian. We would like to use the inverse of the Hessian, but due to the dimension of the space

that we are trying to sample, it is not feasible to compute −H−1. To implement this algorithm we

need to be able to compute the gradient. See Appendix A for analytical expressions of these objects.

Statistical considerations lean toward our use of MALA rather than RWMH to sample our high-

dimensional distribution. Specifically, Roberts and Rosenthal (1998) show that MALA has favorable

properties compared with a Random Walk algorithm in high dimensions. They show the mixing time

of the Markov chain for i.i.d. target densities is O(n1/3) for MALA, while Roberts, Gelman, and Gilks

(1997) show that it is O(n) for RWMH. Alternatively viewed, Roberts and Rosenthal (1998) show

that MALA has a larger optimal acceptance rate than RWMH, 0.574 versus 0.234, resulting in a more

efficient algorithm. Generalizing these results to more complex target densities is an active area of

research. Roberts and Rosenthal (2001) examine product densities in which the components have dif-

ferent scalings, finding that RWMH and MALA still scale with O(n) and O(n1/3) respectively. Breyer,

Piccioni, and Scarlatti (2004) extend the MALA scaling results to the case of nonlinear regression.

Bedard (2007) extends convergence results of Roberts, Gelman, and Gilks (1997) for RWMH to a more

general setting and still recovers the O(n) scaling. Beskos, Roberts, and Stuart (2009) further extend

RWMH and MALA results in Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (1998)

to a class of non-product target densities. Mattingly, Pillai, and Stuart (2012) and Pillai, Stuart, and

Thiéry (2012) extend the O(n) and O(n1/3) scaling results to a class of infinite-dimensional target

densities.

Our takeaway from this literature is that, for the types of densities studied, MALA typically

outperforms RWMH in high dimensions when both algorithms are started in equilibrium, s0 ∼ f(·). We

are mindful of the limits to the types of target densities studied above and that densities implied by a

particular economic model that relates food and total consumption may not satisfy all the assumptions

of a given theorem. We are comforted by the fact that the literature consistently recommends the

acceptance rate for MALA be tuned to approximately 0.574, as opposed to only 0.234 for a RWMH

algorithm, and that mixing time of MALA scales with O(n1/3) rather than O(n). Using MALA is

not a free lunch however, as Christensen, Roberts, and Rosenthal (2005) show that MALA can have

unpredictable behavior when the algorithm is started far away from equilibrium. Further, as discussed

in Roberts and Rosenthal (2001), the performance of MALA is relatively more sensitive to variation

in the scale of different components of the target density than the analogous RWMH algorithm.

Computational complexity and the flexibility of the algorithm further weigh on the decision to use

MALA. MALA involves storing and multiplying vectors of length n rather than matrices of size n2 as

is the case of RWMH with correlated proposals. There is a larger start up cost of MALA that involves

computing the derivatives of the log posterior analytically. Furthermore, derivatives must be computed

at each iteration, although for our problem, these are all, at most, O(n) operations. In the case that

the entire covariance matrix should be used in preconditioning MALA, Simpson, Turner, Strickland,
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and Pettitt (2013) propose an approximation method based on Krylov subspaces that decreases the

amount of floating point operations needed at each iteration of the algorithm. Economically, MALA

is general enough that one can change the demand system for food consumption substantially or

explicitly add a time dimension to the PSID data set, and the algorithm will remain largely intact.

In sections below we will outline various extensions of our model in which the MALA algorithm can

sample with only minor modifications to the code.

4.2.3 Further Extensions to MALA

We can augment the MALA algorithm with a truncated drift term, replacing∇log(f(St)) withD(St) =
D

max{D,|∇log(f(St))|}
∇log(f(St)) in the above equations. Further, we can precondition the SDE by a

state-dependent matrix Λ(S), so that the discretized SDE becomes,

St+1 = St +
h2

2
Λ(St)∇log(f(St)) + h

√
Λ(St)ǫt+1.

Truncating the drift improves the ergodicity properties of the sampler, as demonstrated by Roberts and

Tweedie (1996), while preconditioning adjusts the size of the proposed move by the local curvature

in the appropriate dimension. The Metropolis algorithm that uses the above proposal mechanism

has been called a simplified manifold MALA in Girolami and Calderhead (2011) or position specific

preconditioned MALA in Herbst (2012).

As noted by Livingstone and Girolami (2014) and Xifara, Sherlock, Livingstone, Byrne, and Giro-

lami (2014), a state-dependent preconditioning matrix alters slightly the invariant distribution of the

SDE, so that S is no longer distributed according to f(·) in stationarity.9 As described in Xifara,

Sherlock, Livingstone, Byrne, and Girolami (2014), one can correct this by augmenting the drift term,

so that

dS =
1

2
Λ(S)∇log(f(S))dt +Υ(S)dt+

√
Λ(St)dW

where Υi(S) =
1
2

∑
j

∂
∂Sj

Λi,j(S). Using a discretization of this SDE as a proposal density is the (full)

Manifold Metropolis-Adjusted Langevin Algorithm (MMALA) of Girolami and Calderhead (2011).

As noted in Liu (2001) and Girolami and Calderhead (2011), among others, the MALA algorithm is

also a special case of Hybrid or Hamiltonian Monte Carlo.

5 Imputation Results

5.1 Simulating Data

Before proceeding to use a MALA sampler to impute total nondurable consumption using the PSID

and CEX, we present evidence on the performance of the estimator using simulated data. The idea is

to create artificial data sets that resemble the CEX and PSID, but that have known parameters and

9It should be emphasized that even though the SDE no longer has f(s) as its invariant density, the Metropolis
sampling algorithm that uses the discretized SDE to generate proposals is still a valid algorithm to draw from f(·).
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latent states. To make our DGP realistic, we first run a BPP-style regression on real CEX data to

estimate (β̂, γ̂, σ̂f ). These will be the “true” parameters used in the food demand equation to generate

data. With these known parameters we need c∗simitx , c∗simitp ,Ditx,Ditp in order to use the food demand

equation to generate f sim
itx , f sim

itp .

Start to create the simulated dataset by keeping the observed Ditx,Ditp. To generate latent total

nondurable consumption in the CEX, sample c∗simitx with replacement from measured {citx} in the CEX

dataset, ensuring the distribution of true consumption resembles measured consumption in the CEX.10

To generate latent total nondurable consumption in the PSID, first scale {citx} in such a way

that c∗simitp has the correct mean and variance if backed out of a BPP regression using (β̂, γ̂, σ̂f ).

To generate the simulated PSID nondurable consumption data, sample c∗simitp with replacement from

the scaled distribution of {citx}, ensuring the distribution of true consumption is consistent with the

statistical relationship implied by the BPP regression.

To simulate csimitx , we need to take a stand on the amount of measurement error present in the

data. For this exercise we set σ̂cx = 0.05 ∗ σcitx , such that 5% of the standard deviation of measured

total nondurable consumption is attributable to measurement error. With σ̂cx calculated, generate

csimitx = c∗simitx + σ̂cxνitj . Finally, use the statistical model to generate f sim
itj = Ditj β̂ + γ̂c∗simitj + σ̂feitj ,

using draws from the normal distribution for eitj .

5.2 Specifying Priors

Given our simulated data, we need to specify values for the prior distributions before estimating the

model:

p(c∗itx) = N(c̄itx, σ
2
citx) p(c∗itp) = N(1.08c̄itx, 1.25σ

2
citx)

p(β) = N(0, 1) p(γ) = N(0, 1)

p(σf ) = IG(11, 3) p(σcx) = IG(6, 0.5).

There are no strong reasons to pick exactly the standard normal distribution for β and γ. However,

the principle is to have a weak prior with large variance such that the posterior is largely informed by

the likelihood. For the standard deviation of the food demand equation, σf , we choose parameters of

the inverse gamma distribution such that the prior mean is around σ̂BPP
f , with a standard deviation

of 0.1. For the standard deviation of the CEX nondurable consumption measurement equation, σcx,

we choose parameters of the inverse gamma distribution such that the prior mean matches 0.05σ̂cx,

reflecting our prior belief on the amount of measurement error in the CEX, with a standard deviation

of 0.05.

We set p(c∗itx) equal to a normal distribution with mean and variance equal to the mean and

variance of the empirical distribution of measured total nondurable consumption in the CEX. We

set p(c∗itp) equal to a normal distribution with mean and variance a scaled up version of that for

10Note that this sampling removes correlation between Ditx and c∗simitx , which could potentially complicate estimation.
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c∗itx, reflecting higher average food expenditure in the PSID. The particular scaling factors are chosen

to generate the mean and variance of the empirical distribution of total nondurable consumption in

the PSID implied by the estimated BPP regression. Note that these are priors for an individual’s

consumption at a given time period. This prior suggests that each c∗itj was likely drawn from a good

guess of the empirical distribution of c∗itj across all people and times.11

In analyzing the imputed values, it is important to analyze the sensitivity of the estimator to prior

specification. One approach is to measure the difference between prior and posterior distributions, as

any change is a measure of how informative the data are. As will be shown, in our application, the

posteriors are very distinct from the priors.

5.3 Imputation Results Using Simulated Data

We can now use the artificial dataset, (csimitx , f sim
itx , f sim

itp , Ditx, Ditp), to draw from the joint posterior

distribution of parameters and latent states, (c∗simitx , c∗simitp , β̂, σ̂f , σ̂cx, γ̂). Since these values are known

via simulation, we can test the accuracy and precision of our proposed Bayesian imputation algorithm

to analyze the degree of imputation uncertainty surrounding the latent variables.

Although theoretically MALA has comparatively shorter mixing times relative to a RWMH al-

gorithm, experience has shown that this sampler still has high integrated autocorrelation times in

absolute terms for the problem at hand and thus a long chain is needed for accurate inference. We

simulate a chain length of 25 million, thinning the chain to reduce correlation in draws by keeping

every 5,000th draw. We then burn the first 1,000 draws, ultimately leaving 4,000 draws for inference.

See Table 1 for statistics of the posterior distribution for parameters θ. One key result is that the

estimated β parameters are almost all tightly centered very close to the true parameter values. The

second key result in this table is that γ is well estimated. This parameter relates total nondurable

consumption to food consumption, and thus has a very strong influence on the posterior of c∗itj . The

posterior of σf is very tight and centered at its true value, while the posterior for σcx is slightly up-

ward biased. Furthermore, as β and γ had standard normal priors, it is immediately apparent from

analyzing moments of the posterior that the data strongly informed the estimates. The prior for σf

had a mean of 0.3 and standard deviation of 0.1, while the prior for σcx had a mean of 0.1 and a

standard deviation of 0.05, revealing that the posterior is also very different from the prior in these

dimensions.

Table 2 and Table 3 provide estimation results on the posterior distributions of c∗itx and c∗itp.

For each latent observation of an individual’s nondurable consumption at a point in time we have a

sequence of draws from the posterior distribution. The first row presents statistics of the true simulated

data. The second row of these tables presents statistics of the posterior distribution. To highlight

the effects of abstracting from imputation uncertainty, in the third row we calculate the posterior

mean for each c∗itj as a “point estimate” (for each itj, we average across the draws of c∗itj produced

11Note that in the estimation results presented in Table 2 and Table 3 the posteriors are substantially tighter than the
prior, as can be seen by comparing StDev(Truth) with Mean(StDev(c∗itj)).
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by the Markov chain) and then compare statistics of the resulting distribution of mean estimates of

individual consumption to statistics of the true simulated data.12 Table 2 documents that mean c∗itx is

distributed very similarly to the truth, with the mean, standard deviation and 95% interval of mean

c∗itx all being very close to corresponding statistics of the true simulated data. The fourth row shows

that, on average, the standard deviation of the posterior of c∗itx is quite small, given that mean c∗itx

is on average 9.398 and the standard deviation is on average 0.0375. Also, the posterior standard

deviation does not vary much across individual/time observations, as the standard deviation of the

posterior standard deviation is 0.0005. These results suggest highly accurate and precise estimates of

c∗itx, which is not surprising given that the data contain citx, which is a noisy measure of c∗itx.

More importantly, Table 3 suggests quite accurate estimation results for imputed c∗itp, even though

the data contain no direct measure of this variable. While not lining up as exactly as the CEX

estimates, the statistics of mean c∗itp are also very close to the corresponding statistics of the simulated

data, with the true mean equal to 10.1199 and the mean of the posterior mean c∗itp equal to 10.1424.

Not surprisingly, the standard deviation and 95% interval for PSID imputed consumption are not as

close to the truth as for the CEX, but they are still quite close. The second major result seen in Table

3 is that the mean posterior standard deviation of c∗itp is 0.2439—significantly larger than the 0.0375

seen in the CEX. This provides a measure of the uncertainty surrounding the imputed consumption

estimate. Because of the increased imputation uncertainty, the point estimate given by the mean of

the posterior distribution does a worse job at matching the variability of the true data, as seen in

the standard deviation and tail-quantile statistics. This suggests that any research that would use a

point estimate of imputed consumption as “data” and ignore that it is an estimated value could be

significantly understating standard errors and making possibly worse mistakes.

Finally Table 4 and Table 5 measure the imputation error when using the mean of the posterior

distribution as a point estimate of missing consumption. Define imputation error εitj := ĉ∗itj−c∗itj , with

ĉ∗itj the mean of the posterior distribution of c∗itj . Confirming previous results, mean imputation error

in the CEX is extremely small, with 0.0003 mean error measuring consumption that averages 9.398.

Reflecting the size of measurement error, the standard deviation of this imputation error is 0.0208.

While Table 2 demonstrated that the distribution of estimated consumption matched the distribution

of actual consumption in the CEX, Table 4 suggests that the estimation of each observation is highly

accurate and precise. Table 5 presents the corresponding results for the PSID, again documenting that

the mean imputation error in the PSID is quite small, with 0.0225 mean error measuring consumption

that averages 10.1424. However, in the PSID, the standard deviation of the imputation error is

significantly larger than in the CEX, at 0.2394. This significant variability in estimation error again

suggests that the imputation results should not be treated as “data” without acknowledging estimation

error.

12The mean of the posterior can heuristically be thought of as a point estimate for c∗itj corresponding to a particular
loss function.

15



5.4 Imputation Results Using PSID and CEX Data

After providing evidence that the Bayesian estimator performs quite well on simulated data, this

section focuses on performing the imputation using real CEX and PSID data. For this exercise we

limit the estimation to the same time period—1980–1992—and selection criteria as BPP to facilitate

comparison across estimators. This results in approximately 8,600 person-time observations in the

CEX and 15,500 person-time observations in the PSID.

We estimate the model using the same procedure outlined for the simulated data with the same

priors. We simulate a chain length of 25 million draws. We thin the chain to reduce correlation in

draws by keeping every 5,000th draw, burn the first 1,000 of the remaining draws, ultimately leaving

4,000 draws for inference.

Table 6 presents statistics of the posterior distribution for parameters θ. The mean of the posterior

for β is largely in line with the output from a BPP regression. As in Blundell, Pistaferri, and Preston

(2008), some of the elements of β have large confidence intervals while others have quite tight posteriors,

but, importantly, essential parameters like σf , σcx, and especially γ are tightly estimated. Table 7

and 8 provide information on the distribution of the posterior mean and standard deviation of latent

total nondurable consumption. As was the case in the simulated data exercise, the standard deviation

of the consumption posterior in the CEX is quite small at 0.07, while it is larger for the PSID at

0.25. We view the uncertainty surrounding the PSID imputed values as large enough that it must

be accounted for in subsequent use, but not so large as to invalidate the usefulness of the imputed

data. We explore this further in the next section. However, we also note that there is clearly room for

improved statistical models and the use of more data to reduce the substantial imputation uncertainty,

as discussed in Section 7.

6 Applications

The goal of this section is to demonstrate how to use imputed consumption in economic analysis

and also to demonstrate how ignoring imputation uncertainty can generate inaccurate results.13 The

data used are from the PSID and CEX. Sample selection and data treatment can significantly alter

quantitative results, so these excercises are not designed to be authoritative measures of the calculated

statistics. However, the methodology and qualitative results are valuable in demonstrating how to use

the imputed data and the gains from using the full information from the posterior distribution in

second stage analysis.

We document the change in consumption inequality over time by analyzing a time series of statistics

from the consumption distribution, with an emphasis on the uncertainty surrounding these measures.

In order to highlight the importance of imputation uncertainty, the mean, cross-sectional standard

13In some cases, the imputed distribution of consumption is directly the data of interest. In other cases, the consumption
measures may be necessary regressors in a second stage analysis. As an alternative to multiple imputation, if feasible,
one option is to explicitly stack the imputation and the second stage equations in to one system and to perform the
estimation jointly.
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deviation, and quantiles of the consumption distribution are calculated using two different methods.

The first approach uses the full posterior distribution while the second uses the mean of the posterior

distribution as a point estimate. To use the entire posterior, calculate each statistic of interest for

each draw, generating a distribution of each statistic. Quantiles of the distribution of the statistic can

be used to demonstrate how the uncertainty surrounding imputed values translates into uncertainty

around the statistics of interest. Instead, to use the reduced information method, calculate the mean

of the posterior distribution (for each latent state), and then calculate the statistics of interest using

this mean as a point estimate of consumption. The approach using the full posterior distribution is

related to the methodology proposed in the multiple imputation literature, where the pitfalls of using

a single imputation have been well established.14

Figure 1 documents the evolution of the mean of the consumption distribution over time. The

median of the mean consumption statistics when using the full posterior matches nearly identically

the mean calculated using the point estimates. Using the full information of the posterior, the 10th

percentile and 90th percentile are tightly around the median of the mean consumption statistic, sug-

gesting this statistic is tightly estimated.

Figure 2 graphs the evolution of the cross-sectional standard deviation of consumption over time.

This is a common measure of inequality. There is no consensus in the literature on whether or not

consumption inequality has risen over time. The striking result is that using the point estimate to

calculate the standard deviation of the consumption distribution significantly underestimates the true

standard deviation. As can be seen in Figure 2 the level of inequality measured by the point estimate

is well below the 10th percentile of the true distribution of the standard deviation statistic. However,

the change over time seems to be the same across the two methods, suggesting no rise in consumption

inequality over time.

Figure 3 graphs percentiles of the consumption distribution using the two methods. Using the first

method, the 90th, 50th, and 10th percentiles of the consumption distribution in each year are calculated

from the posterior distribution. Since each draw is a draw from the consumption distribution, simply

calculate the percentile across all draws for all individuals in a given year. Using the second method,

the 90th, 50th, and 10th percentiles of the consumption distribution for each year are calculated

as the 90th, 50th, and 10th percentile of the point estimates. Again, the methods agree near the

center of the distribution, as the median of the posterior is essentially the same as the median of the

means of the posterior. However, using the point estimates significantly understates the variance in

the consumption distribution, as the 10th and 90th percentiles of the full-information consumption

distribution are outside of the 10th and 90th percentiles derived from the point estimates. To highlight

14Quoting from Rubin (1988) describing the use of multiply-imputed data sets, “The proper multiple imputations
within each model are called repetitions and are combined . . . to create one inference under each model. The inferences
across models are not combined but are contrasted to reveal sensitivity of inference to assumptions about the reasons
for the missing data. The critical issue then is how to analyze the repetitions within one model to yield a valid inference
under the posited reasons for missing data. The key idea is that M repetitions yield M completed data sets, each of
which can be analyzed by standard complete-data methods just as if it were the real data set. The M complete-data
analyses based on the M repeated imputations are then combined to create one repeated-imputation inference.”
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the size of the discrepancy, for 1985 the 90th percentile of the means of consumption is $39,340, while

the 90th percentile of the consumption distribution is approximately $43,477, an 11 percent difference.

Thus, for any analysis that depends on the variability or tail properties of the imputed consumption

distribution, accounting for imputation uncertainty by using multiple imputation methods is essential.

7 Extensions

In the above analysis, we highlighted our proposed imputation methodology by adopting a simple

statistical model close to that of Blundell, Pistaferri, and Preston (2006). However, our sampling

algorithm is designed to be flexible enough to be able to accommodate a wide array of demand

systems. Below we outline a few promising extensions that might one day improve the quality of the

imputed values. This is done primarily either by providing the estimator with more information from

additional data sources or by improving the structure of the statistical model.15 While we emphasize

that the MALA algorithm as described above is still able to estimate each of these in kind, we note

that the sampling algorithm itself may be improved along a few dimensions.

7.1 Interaction Terms

Our basline model assumes that the true (unobservable) consumption does not interact with any of

the elements Dj in the food-demand equation. For ease of exposition, we will assume there is only

one obserable that interacts with c∗itj , which we’ll call Hitj. Then, food demand is given by

fitj = D
′

itjβ + γc∗itj + αc∗itjHitj + σfeitj

for each of the CEX and PSID datasets. The likelihood computation with such an addition is straight-

forward, with some minor adjustments needed to the gradient to implement MALA.

7.2 A richer measurement error structure

Our baseline includes iid across time, agent, and dataset, measurement errors. Recently, Aguiar and

Bils (2013) have emphasized income-quintile specific errors in the food demand equation. This can

be incorporated into the baseline model by expanding the individual characteristics matrix Di as

follows. Suppose that the level of observed food consumption, ef
∗

itx , is related to the level of true food

consumption, ef
∗

itx , as

efitx = ef
∗

itx+φitx+εitx.

Here φitx is an income-level specific measurement error, motivated by the Aguiar and Bils (2013)

finding that the rich may under report food consumption relative to the poor, while εitx is classical

15The extensions discussed all maintain the log demand system structure used by BPP. Another possible direction for
improvement would be to base the statistical model on a richer demand system (such as those discussed in Pollak and
Wales (1995)).
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measurement error. We can plug this into our original food demand equation to get,

fitx = φitx +D
′

itxβ + γc∗itx + σfeitx + εitx

= D̃
′

itxβ̃ + γc∗itx + σ̃f ẽitx

where D̃ now has a set of dummy variables representing agent i’s income quintile, with associated

loadings embedded in β̃. That the measurement error in food εitx is uncorrelated with the variables in

D̃ allows us to estimate a single food demand error σ̃f ẽitx. Further following Aguiar and Bils (2013),

additional good-specific measurement error in food would be subsumed in our estimated constant in

the food-demand equation.

7.3 Instruments

The Blundell, Pistaferri, and Preston (2006) specification uses instrumental variables in order to

estimate the γ parameter. As described in Minka (1999) and Lopes and Polson (2014), one can add

instruments in a Bayesian context as well. One way to add an instrument Zt to the estimation routine

is by adding another observation equation,

Zitj = δ0 + δ1c
∗
itj + σzǫitj

This specification adds 3 parameters (that are shared across datasets), but brings in TxNx + TpNp

observables Zitj . Adding the instruments in this way effectively models the total consumption with

an errors-in-variables model. In a simple linear model such as ours, Minka (1999) describes how to

marginalize the c∗itj parameters to perform inference on θ. As explored by Lopes and Polson (2014),

one must be careful with the specification of priors in such an instance.

7.4 Incorporating additional datasets

Another extension is motivated by Attanasio, Battistin, and Ichimura (2007), who combine the two

CEX datasets: Diary and Survey. In addition to the CEX Survey data that we have been using

throughout the paper, the CEX also collects data from consumer diaries. Consumers are asked to

keep logs of all consumption expenditures, as opposed to answering questions at the end of the quarter

about the previous quarters expenditures. The CEX Diary and CEX Survey both contain measures

on all consumption categories. It is believed that the CEX Diary has less measurement error for daily

small consumption categories, while the Survey is better at measuring large infrequent purchases. We

can treat the CEX Diary measure and CEX Survey measure of the same consumption category as two

noisy observations of the same variable. In such an instance, we will let xd and xs denote the Diary

and Survey measures, respectively. Then, observable consumption in the CEX is

citxd = c∗itx + σcxdvitxd

citxs = c∗itx + σcxsvitxs.
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In addition to using more data from the CEX, there is more data in the PSID that could be

useful for the imputation procedure. In 1999 the PSID added survey questions to start measuring

consumption categories beyond just food. In 2005 the PSID expanded this set of questions. While

this may reduce the need for imputation going forward, for many questions analyzing time trends

it may be desirable to use a variable that is consistently available across all time periods, instead

of using the imputed measure only when direct measures are not available. Thus, we can augment

the estimator to use measured consumption in the PSID post 1999 to improve the imputed values

for all time periods, in a similar manner to the treatment of measurement error in total nondurable

consumption in the CEX.

7.5 A time dimension

In our baseline model, the unobserved total consumption in the PSID and CEX does not have a time

dimension. We can easily add one, for example, by assuming that

c∗itj = c∗i,t−1,j + σεεitj

with εitj ∼ N(0, 1). Now, total consumption is intertemporally linked for each member of the survey.

In the CEX, which is constructed by rolling panels of agents, there will only be 1 year to link together.

The PSID has an important time dimension and presumably taking this into account will sharpen

inference on c∗itp. Such a specification adds one static parameter to the dimension of the state space:

σ2
ε .

8 Conclusion

This paper develops a Bayesian estimator to impute total nondurable consumption in the PSID using

CEX data. We treat an individual agent’s total nondurable consumption in each year as a latent

variable and sample from the joint posterior distribution of latent states and parameters governing

the food demand equation, given the data contained in the PSID and CEX simultaneously. This

extremely high dimensional posterior distribution imposes sampling challenges. The main technical

contribution of this paper is to develop a suitable sampler by exploiting derivatives of the posterior

distribution using a Metropolis Adjusted Langevin Algorithm. The developed imputation algorithm is

demonstrated to perform well on the baseline model and is also flexible, as it is adaptable to extensions

that use more advanced statistical models and additional sources of data. The Bayesian estimator

has advantages over existing methods in terms of efficiency and also provides essential information

about imputation error and parameter uncertainty. Results using simulated data and applications

using PSID and CEX data highlight the need to treat imputed values as estimates as opposed to

measurements.
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êitp
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Plugging this in, we get the gradient of the log likelihood as,
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The diagonal elements of the Hessian of the log posterior are,
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B Tables

Table 1: Estimation Results for θ on Simulated Data

Parameter True Mean StDev 2.5% 97.5%

β1 -0.0343 0.1447 0.0794 0.0069 0.3051

β2 0.0228 0.0219 0.0068 0.0086 0.0355

β3 0.0580 0.0522 0.0082 0.0363 0.0681

β4 0.0996 0.0990 0.0120 0.0760 0.1227

β5 0.0388 0.0308 0.0066 0.0179 0.0439

β6 0.0176 0.0153 0.0048 0.0062 0.0246

β7 1.5772 1.3453 0.3502 0.6506 1.9647

β8 -1.5944 -1.2917 0.3857 -1.9838 -0.5438

β9 0.0268 0.0264 0.0062 0.0141 0.0384

β10 -0.0226 -0.0207 0.0057 -0.0324 -0.0095

β11 -0.0384 -0.0388 0.0058 -0.0506 -0.0273

β12 0.2611 0.2648 0.0288 0.2105 0.3222

β13 0.0902 0.2067 0.1312 -0.0466 0.4708

β14 0.4818 0.2600 0.1575 -0.0487 0.5676

β15 -0.2073 -0.0963 0.0727 -0.2382 0.0476

β16 -0.3930 -0.4282 0.1022 -0.6263 -0.2326

β17 -0.0267 -0.0307 0.0149 -0.0595 0.0000

β18 0.0026 0.0130 0.0134 -0.0129 0.0402

β19 0.0059 0.0128 0.0130 -0.0122 0.0386

β20 0.0030 0.0148 0.0132 -0.0109 0.0403

β21 0.0040 0.0030 0.0128 -0.0215 0.0277

β22 0.0026 0.0112 0.0118 -0.0113 0.0344

β23 0.0128 0.0070 0.0116 -0.0160 0.0294

β24 0.0507 0.0387 0.0075 0.0241 0.0530

σf 0.2340 0.2348 0.0019 0.2310 0.2386

σcx 0.0206 0.0374 0.0065 0.0259 0.0515

γ 0.8343 0.8200 0.0039 0.8122 0.8273

Table 2: Estimation Results for c∗x on Simulated Data

Object Mean StDev 2.5% 97.5%

Truth 9.3980 0.4144 8.5646 10.2035

ĉ∗itx 9.3983 0.4136 8.5666 10.1967

Mean(ĉ∗itx) 9.3983 0.4119 8.5748 10.1972

StDev(ĉ∗itx) 0.0375 0.0005 0.0366 0.0384



Table 3: Estimation Results for c∗p on Simulated Data

Object Mean StDev 2.5% 97.5%

Truth 10.1199 0.4566 9.2141 11.0123

ĉ∗itp 10.1424 0.4642 9.2202 11.0450

Mean(ĉ∗itp) 10.1424 0.3950 9.3514 10.9057

StDev(ĉ∗itp) 0.2439 0.0028 0.2384 0.2493

Table 4: Estimation Results for c∗x on Simulated Data

Mean(εitx) StDev(εitx) Max(Abs(εitx)) mean(ε2itx) StDev(ε2itx)

0.0003 0.0208 0.0752 0.0004 0.0006

Table 5: Estimation Results for c∗p on Simulated Data

Mean(εitp) StDev(εitp) Max(Abs(εitp)) mean(ε2itp) StDev(ε2itp)

0.0225 0.2394 1.0312 0.0578 0.0847



Table 6: Estimation Results for θ on CEX and PSID Data

Parameter Mean StDev 2.5% 97.5%

β1 -0.1552 0.0828 -0.3036 0.0205

β2 0.0304 0.0068 0.0169 0.0433

β3 0.0571 0.0081 0.0409 0.0723

β4 0.0697 0.0118 0.0467 0.0924

β5 -0.0840 0.0069 -0.0976 -0.0706

β6 -0.0495 0.0048 -0.0586 -0.0400

β7 2.9222 0.3562 2.2178 3.5613

β8 -2.7681 0.3924 -3.4906 -2.0028

β9 0.0444 0.0062 0.0324 0.0567

β10 -0.0529 0.0057 -0.0641 -0.0418

β11 -0.0385 0.0059 -0.0501 -0.0271

β12 0.5027 0.0289 0.4470 0.5596

β13 -0.0897 0.1310 -0.3476 0.1681

β14 0.1973 0.1561 -0.1077 0.5013

β15 -0.2153 0.0720 -0.3552 -0.0771

β16 -0.0886 0.1019 -0.2830 0.1151

β17 -0.0071 0.0149 -0.0353 0.0230

β18 0.0110 0.0134 -0.0145 0.0374

β19 0.0187 0.0131 -0.0065 0.0448

β20 0.0266 0.0134 0.0008 0.0530

β21 0.0294 0.0129 0.0046 0.0543

β22 0.0261 0.0118 0.0034 0.0496

β23 0.0338 0.0115 0.0114 0.0571

β24 0.0904 0.0077 0.0756 0.1056

σf 0.2317 0.0027 0.2264 0.2368

σcx 0.0725 0.0103 0.0512 0.0919

γ 0.8004 0.0047 0.7910 0.8095

Table 7: Estimation Results for c∗x on CEX and PSID Data

Object Mean StDev 2.5% 97.5%

ĉ∗itx 9.3935 0.4066 8.5743 10.1808

Mean(ĉ∗itx) 9.3935 0.4005 8.5847 10.1766

StDev(ĉ∗itx) 0.0700 0.0009 0.0683 0.0718

Table 8: Estimation Results for c∗p on CEX and PSID Data

Object Mean StDev 2.5% 97.5%

ĉ∗itp 10.1496 0.4582 9.2347 10.9984

Mean(ĉ∗itp) 10.1496 0.3870 9.3710 10.8499

StDev(ĉ∗itp) 0.2454 0.0028 0.2400 0.2509



C Figures

Figure 1: Mean of the Consumption Distribution
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Figure 2: Cross-Sectional Standard Deviation of the Consumption Distribution
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Figure 3: Quantiles of the Consumption Distribution
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