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1 Linear Gaussian State Space

Let the canonical form for a Linear Gaussian State Space (LGSS) be

St = AtSt−1 +Btvt (1)

Yt = Ctzt +DtSt + wt (2)

where

(

vt
wt

)

∼ iid N

(

0,

[

Qt 0
0 Rt

])

S0 ∼ N(S0|0, P0|0)

The first equation is a state equation (or, transition equation), and the second equation is an observation
equation (or, measurement equation).

St is a vector of latent state variables, and Yt is what we observe. vt is a vector of innovations to latent
state variables, and wt is a vector of measurement error. zt is a vector of observed exogenous variables.

St is ns-by-1, Yt is ny-by-1, and zt is nz-by-1. It follows that At is ns-by-ns, B is ns-by-nv, Ct is ny-by-nz,
Dt is ny-by-ns, Qt is nv-by-nv, and Rt is ny-by-ny.

2 Kalman Filter

Because we can write down the joint likelihood of the data as a product of conditional densities, we
proceed to develop an algorithm to iteratively provide the conditional densities: f(Yt|Y

t−1).

2.1 Useful Facts

1. Since S0 is normal, and since {St} and {Yt} are linear combinations of normal errors, the vector
(S1, · · · , ST , Y1, · · · , YT ) is normally distributed.

2. In general, if

(

x1

x2

)

∼ N

([

µ1

µ2

]

,

[

Σ11 Σ12

Σ21 Σ22

])

then

x1|x2 ∼ N(µ1 +Σ12Σ
−1

22 (x2 − µ2),Σ11 − Σ12Σ
−1

22 Σ21).

2.2 Deriving the Kalman Filter

Thus the following objects of interest are normal and can be characterized by their mean and variance.
Let the following notation hold:

St|Y
t−1 ∼ N(St|t−1, Pt|t−1)

St|Y
t ∼ N(St|t, Pt|t)

Yt|Y
t−1 ∼ N(Yt|t−1, Ft)

Then, from Equation (1):

2



St|t−1 = AtSt−1|t−1 (3)

Pt|t−1 = E((St − St|t−1)(St − St|t−1)
′|Y t−1) = AtPt−1|t−1A

′
t +BtQtB

′
t (4)

From Equation (2):

Yt|t−1 = CtZt +DtSt|t−1 (5)

Ft = E((Yt − Yt|t−1)(Yt − Yt|t−1)
′|Y t−1) = DtPt|t−1D

′
t +Rt (6)

Using the general fact about normal distributions1:

(

St

Yt

)

|Y t−1 ∼ N

([

St|t−1

Yt|t−1

]

,

[

Pt|t−1 Pt|t−1D
′
t

DtPt|t−1 Ft

])

Thus,

St|Y
t = St|Yt, Y

t−1 ∼ N(St|t, Pt|t) (7)

∼ N(st|t−1 + Pt|t−1D
′
tF

−1
t (Yt − Yt|t−1), Pt|t−1 − Pt|t−1D

′
tF

−1
t DtPt|t−1) (8)

Using the initial condtions iteratively applying the updating equations derived above, we can construct
the sequence of the conditional distributions of the states and observations, and thus the likelihood.

3 Kalman Smoother

The Kalman filter uses past and current observations to predict the current state, (i.e., {St|Y
t} ∀t).

While this is sufficient for computing the likelihood of the system, this is suboptimal for estimating the
sequence of states. The econometrician should use all available data to estimate the sequence of states (i.e.,
{St|Y

T } ∀t). The Kalman smoother produces these distributions.
Before calculating the Kalman smoother it is useful to note2

(

St

St+1

)

|Y t ∼ N

([

St|t

St+1|t

]

,

[

Pt|t Pt|tA
′
t+1

At+1Pt|t Pt+1|t

])

Let Jt := Pt|tA
′
t+1P

−1

t+1|t. Then, by the general fact about Normal distributions,

E
[

St|St+1, Y
t
]

= St|t + Jt(St+1 − St+1|t) (9)

V ar
[

St|St+1, Y
t
]

= Pt|t − Pt|tA
′
t+1P

−1

t+1|tAt+1Pt|t (10)

We are now ready to derive the Kalman smoother:

E[St|Y
T ] = E

[

E
[

St|St+1, Y
T
]

|Y T
]

; (by Law of Iterated Expectations) (11)

= E
[

E
[

St|St+1, Y
t
]

|Y T
]

(12)

= E
[

St|t + Jt(St+1 − St+1|t)|Y
T
]

; (by Equation (9)) (13)

= St|t + Jt(St+1|T − St+1|t) (14)

We can go from Equation (13) to Equation (14) by realizing St|t, Jt, and St+1|t are functions of Y t.
That is, they are all known exactly as output from the Kalman filter, which condtions only on Y t. Thus,
conditioning on any set that at least includes Y t cannot change St|t, Jt, or St+1|t (as they are known exactly).

1See A.1 for a derivation of the covariance.
2See A.2 for a derivation of the covariance.
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We can go from Equation (11) to Equation (12) by recognizing the following fact:

Let Z = Y + ǫ

E [X|ǫ] = E [X]

then,

E [X|Y,Z] = E [X|Y, ǫ] (because given, Y,Z, ǫ is known)

= E [X|Y ] (by independence of X and ǫ)

Applying this fact to our case notice that Y T
t+1 = g(St+1, {ws, vs}

T
s=T+1

) for some g.

E
[

St|St+1, Y
T
]

= E
[

St|St+1, Y
t, Y T

t+1

]

= E
[

St|St+1, Y
t, g(St+1, {ws, vs}

T
s=t+1)

]

= E
[

St|St+1, Y
t
]

; (by independence of St and {ws, vs}
T
s=t+1∀t)

3.1 Kalman Smoother: Time 0

The Kalman smoother formula can be used to derive E
[

S0|S1, Y
T
]

. Note: Y 0 = ∅.

(

S0

S1

)

|Y 0 ∼ N

([

S0|0

S1|0

]

,

[

P0|0 P0|0A
′
1

A1P0|0 P1|0

])

Then,

E
[

S0|Y
T
]

= E
[

E
[

S0|S1, Y
T
]

|Y T
]

= E
[

S0|0 + J0(S1 − S1|0)|Y
T
]

= S0|0 + J0(S1|T − S1|0)

= S0|0 + P0|0A
′
1P

−1

1|0 (S1|T − S1|0)

Where we use the fact that S0|0, J0, and S1|0 are parameters or functions of paramters (S1|0 =
A1S0|0, P1|0 = A1P0|0A

′
1 +B1Q1B

′
1).
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A Deriving Covariances

A.1 cov(Yt, St|Y
t−1)

cov(Yt, St|Y
t−1) = E[(Yt − E[(Yt|Y

t−1)])(St − E[(St|Y
t−1)])|Y t−1]

= E[(Yt − Yt|t−1)(St − St|t−1)|Y
t−1]

= E[(DtSt + wt − Yt|t−1)(St − St|t−1)|Y
t−1]

= E[DtStS
′
t + wtSt − Yt|t−1St −DtStSt|t−1 − wtSt|t−1 + Yt|t−1St|t−1|Y

t−1]

= DtE[StS
′
t|Y

t−1]−DtE[St|Y
t−1]St|t−1 − Yt|t−1E[St|Y

t−1] + Yt|t−1E[St|Y
t−1]

= Dt

[

E[StS
′
t|Y

t−1]− (E[St|Y
t−1])2

]

= Dtvar(St|Y
t−1)

= DtPt|t−1

A.2 cov(St, St+1|Y
t)

cov(St, St+1|Y
t) = cov(St, AtSt +Btvt|Y

t)

= cov(St, AtSt|Y
t) + cov(St, Btvt|Y

t)

= Atcov(St, St|Y
t); (by independence)

= AtPt|t
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