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Equilibria in Incomplete Market Economies

• These notes build closely on those of Gianluca Violante and those of

Victor Rios-Rull (Mpls Fed SR 231 �Computation of Equilibria in

Heterogeneous Agent Models�).

• These notes build on insights and results in Chamberlain and Wilson

(2000), Aiyagari (1994), Kamihigashi and Stachurski (2014), Aiyagari

and McGratten (1998), Floden (2001), Floden and Linde (2001),

Krusell-Smith (1998), JEDC Special Issue 34(1), and Algan, Allais,

Den Haan, and Rendhal Handbook of Computational Economics

Chapter 6.
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Equilibria in Incomplete Market Economies

Non-trivial endogenous distribution of agents across income and assets

• Aiyagari (1994) Model

1 Income Fluctuation Problem

2 Aggregate production function

3 Equilibrium in asset markets (r)

• Stationary Recursive Rational Expectations Equilibria

• Transition Dynamics

• Aggregate Shocks (Krusell-Smith 1998)

• Applications: Government tax/transfer policy, optimal quantity of

government debt, welfare costs of business cycles, the equity premium,

etc.
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Compact Asset Space: β(1 + r) < 1

• Recall intertemporal and precautionary saving motive

• Intertemporal: Relation of β to (1 + r) important determinant of slope

of consumption over time

• Precautionary saving: force favoring saving at cost of postponed

consumption

• In typical income �uctuation problem, if β(1 + r) > 1 patience and

precautionary motive reinforce s.t. consumption and saving increase

without bounds

• If β(1 + r) < 1 impatience and precautionary motives compete,

allowing possibility of bounded assets and consumption with ergodic

distribution

• In�nitely lived vs. �nite lived agents

• See Chamberlain and Wilson (2000) for rigorous analysis of compact

asset space using supermartingale convergence theorem.
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Aiyagari 1994: Neoclassical Growth w/ Incomplete Markets

• Demographics: Measure 1 of in�nitely lived ex-ante identical agents

• Preferences: Time separable over in�nite streams of consumption

Ut = Et
∞∑
τ=t

βτ−tu(cτ ) β ∈ (0, 1)

u′ > 0, u′′ < 0

• Inelastic labor supply, normalized to 1 unit of time

• Endowments: Markov endowments of e�ciency units z

z ∈ Z := {z1, z2, . . . zN}

π(z′, z) transition probabilities

• Stationary distribution π∗(z) implies constant aggregate labor supply

Ht =
N∑
j=1

zjπ
∗(zj) = H∗
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Aiyagari: Household Problem

• One Asset: risk-free asset with rate of return rt

• Budget Constraint: cit + ait+1 = (1 + rt)a
i
t + wtz

i
t

• Borrowing Constraint: ait+1 ≥ amin
• Recursive individual problem

Vt(a, z) = max
a′,c

u(c) + β
∑
z′∈Z

π(z′, z)Vt+1(a′, z′)

s.t.

c+ a′ = (1 + rt)a+ wtz

a′ ≥ amin

• Histories

individual state variable summarizes history

need to know time to forecast wt, rt
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Aiyagari: Firms & Market Clearing

• Many identical competitive �rms

CRS production function Yt = F (Kt, Ht),

with depreciation δ ∈ (0, 1)

rent capital & hire labor on spot markets at prices ρt, wt

MPs = factor prices, aggregates to representative �rm because of CRS

• Absence of arbitrage: rt = ρt − δ
bonds & capital perfect substitutes

• Market clearing

goods, assets, labor

aggregate resource constraint: Ct +Kt+1 − (1− δ)Kt = F (Kt, Ht)

• Equilibrium

allocations & prices s.t. households & �rms optimize, markets clear

stationary recursive equilibrium: constant prices, stationary

distribution, individual policy rules independent of time
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The Stationary Distribution

• Idiosyncratic State: (a, z)

• Distribution of individual states at time t: λt

• State Space S = A× Z; A := [amin, ā]

• σ-algebra Σ with typical subset S = (A×Z).

• For any set S ⊂ Σ, λ(S) is the measure of agents in S
• Transition function Q((a, z),S) is the probability an individual with

current state (a, z) transits into the set S. Q : S × Σ→ [0, 1]

Q((a, z),A×Z) = Ia′(a,z)∈A
∑
z′∈Z

π(z′, z)

• Note: a′ is optimal saving policy, so the indicator function is

deterministic.

λt+1(S) =

∫
Q((a, z),S)dλt

• λ∗, the stationary distribution, is the �xed point of this functional

equation
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Stationary Recursive Equilibrium: De�nition

A Stationary Recursive Equilibrium consists of value function v : S → R,
optimal household policies a′ : S → R and c : S → R+, optimal �rm policies

H and K, wage w, rental rate r, and stationary measure λ∗ such that

• Optimal choice

Households: Given r, w decision rule a′(a, z) solves the household

problem and v is the associated value function

Firms: Given r, w, �rm choices satisfy r + δ = FK(K,H) and

w = FH(K,H)

• Market clearing

The labor market clears: H =
∫
zdλ∗

The asset market clears: K =
∫
a′(a, z)dλ∗

The goods market clears:
∫
c(a, z)dλ∗ + δK = F (K,H)

• Stationary distribution: ∀ S ∈ Σ, λ∗ satis�es

λ∗(S) =

∫
Q((a, z),S)dλ∗
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Stationary Recursive Equilibrium: Existence and Uniqueness

To prove existence and uniqueness, su�cient to show excess demand

function (of price) in each market is continuous, strictly monotone, and

crosses zero.

• Labor market is trivial: Aggregate labor supply constant H∗ and labor

demand decreasing in wage

• 3 Markets. By Walras law, su�cient to show equilibrium in asset

market exists and is unique

• Capital demand (from �rm FOC): K(r) = F−1
k (r + δ)

For nice F , demand for capital is a continuous, strictly decreasing

function of r

As r → −δ,K →∞
As r →∞,K → 0.

• Capital Supply:

A(r) =

∫
a′(a, z; r)dλ∗(r)
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Existence and Uniqueness: Capital Supply

A(r) =

∫
a′(a, z; r)dλ∗(r)

• Su�cient for existence if A(r) is continuous in r and crosses aggregate

demand

• If β(1 + r) = 1, then A(r)→∞ (Chamberlain and Wilson 2000)

• If r = −1, a′(a, z) = amin ∀(a, z)

• Thus, if A(r) continuous, it crosses K(r) and equilibrium exists

• Standard results to show a′(a, z; r) is continuous and strictly increasing

in r (Theorem of Maximum; see Aiyagari 1994, Huggett 1993)

• What about λ∗? First, analyze properties of equilibrium
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Discussion of Equilibrium

• For intuition, think relative to complete markets benchmark

Recall in complete markets 1 + r = β, at = a0

Earnings certain or markets complete: (1 + r)β < 1, then A(r) = amin

(1 + r)β > 1 implies in�nite asset demand

• If r = −1, a′(a, z) = amin ∀(a, z)
• As 1 + r → β from below, small increase in r implies big increase in

A(r)

• In decision problem, by choosing 1 + r close to β can get arbitrarily

large saving behavior
• Equilibrium r puts discipline on saving behavior, which combined with

calibration can lead to quantitative insights

Have to discipline r to avoid arbitrary behavior

Other ways to do that, e.g., data on r

• Given decreasing K(r) and equilibrium 1 + r < β, equilibrium K must

be higher than complete market K. Over accumulation of capital for

self-insurance. Kprec = Keq −KFI

• Relaxing borrowing limit increases r by shifting A(r) curve to left.
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Equilibrium r: Aiyagari 1994 Figure IIb
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Existence and Uniqueness: Stationary Distribution

See Kamihigashi and Stachurski (2014)

(most recent in Hopenhayn and Prescott (1992) line of research)

• SLP 12.13 says if λ∗ exists and is unique, then it is continuous in r

• Existence of λ∗ from compactness of S and Q with Feller property

• Uniqueness of λ∗ by monotonicity of Q and Monotone Mixing

Condition

1 Compactness: With β(1 + r) < 1 and DARA preferences, ∃ ā. Given
Z, then S is compact subset of R2

2 Feller property of Q requires associated operator T is a mapping on

functions that preserves continuity and boundedness. Easy to show

since a′(a, z) is continuous and bounded given compact domain of asset

space.

Trλ(S) =
∫
Qr((a, z),S)dλ
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Existence and Uniqueness: Stationary Distribution

3 Monotonicity of Q: For all increasing functions f : S → R, Tf is also

increasing. Basically want to show conditional expectation is

increasing:

p(a, z) := (Tf)(s) =

∫
f(s′)Qr(s, ds

′)

Let π be monotone, i.e., E[f(z′)|z] =
∑
z′∈Z f(z′)π(z′, z) be increasing

in z. This means positive autocorrelation in the income process, an

empirically valid assumption.

Think �rst order stochastic dominance:

F �FSD G iff F (x) < G(x) ∀ x. Let â > ã
• Need to show

∑
z′∈Z

∫
A f(a′, z′)Q((â, z), da′ × z′) >∑

z′∈Z
∫
A f(a′, z′)Q((ã, z), da′ × z′)

• De�ne CDF F (x) = Ia′(â,z)∈(−∞,x]
∑
z′∈Z π(z′, z)

• De�ne CDF G(x) = Ia′(ã,z)∈(−∞,x]
∑
z′∈Z π(z′, z)

• Just compare indicator functions

• Since a′ increasing, for â > ã, a′(â, z) > a′(ã, z) then F �FSD G

Then Q is monotone, since for a given i, j, a higher (a, z) increases the

probability of being in (a′, z′) > (ai, zj) next period. Thus, it is more

likely to arrive in the region where f is high, since f is increasing.
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Existence and Uniqueness: Stationary Distribution

4 Monotone Mixing Condition: There is a positive probability of

transiting from the lowest state to some intermediate state and from

the highest state to that intermediate state in �nite time.

Suppose starting at (ā, zN ), π(z′, z) stationary, and receives a long

sequence of zmin shocks. Household receiving a long sequence of

transitory negative shocks such that permanent income is above current

income, try to smooth consumption via decumulating assets until hitting

neighborhood of amin.

Suppose starting at (amin, z1) and receives a long sequence of zN

shocks. Household will save, accumulating wealth since current income is

higher than permanent income, until reaching some neighborhood of ā.

1 Conditions shown are enough to prove A(r) continuous (existence). If

could show A(r) is strictly increasing, would have uniqueness.

2 Di�cult to prove uniqueness. Depending on dominance of income and

substitution e�ects a′(a, z; r) may not be monotone in r and would still

need to show e�ect of changes in r on λ∗.

3 No proofs of stability (convergence results from initial conditions)?
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Existence and Uniqueness: Stationary Distribution

• Kamihigashi and Stachurski (2014) extend stochastic stability in

monotone economies to non-compact state space. Also use weaker

condition than monotone mixing condition: order reversing condition.

• Intuition: Global stability requires enough mixing. Think irreducibility

of Markov chain. Otherwise can get stuck in certain regions of

subspace and have multiple stationary distributions in distinct

�absorbing� subsets of the state space. Also might have hysteresis.

• See also Bar Light (Economic Theory, forthcoming), who shows that

uniqueness can be guaranteed if households have power utility

functions with CRRA ≤ 1 and elasticity of substitution in the

production function ≥ 1. Intuition is that uniqueness comes if income

e�ect dominates substitution e�ect for households. If every agent saves

more when interest rates increase, then A(r) is increasing in r. Can get

multiplicity if A(r) is ever decreasing in r (which occurs for strong

enough income e�ects, see Acikgoz 2018 JET).
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Algorithm to Compute the Equilibrium

A �xed point algorithm over r. Basically, an outer loop over the IFP that

�nds r such that excess capital demand is zero.

1 Guess initial iteration r0 ∈ (−δ, 1
β
− 1)

2 Given r0, compute aggregate capital demand K(r0) = F−1
k (r0 + δ)

3 Given r0, calculate w(r0) using CRS production function F (K(r0), H)

4 Given (r0, w(r0)), solve the household IFP: a′(a, z; r0), c(a, z; r0)

5 Given a′(a, z; r0) and π(z′, z), construct transition function Q(r0)

6 Given Q(r0) compute λ∗(r0) (next slide)

7 Compute aggregate supply of assets A(r0) =
∫
a′(a, z; r0)dλ∗(r0)

(next slide)

8 Update to r1

De�ne excess demand A(r0)−K(r0) and use equation solver to �nd

root r∗

If A(r0) > K(r0), then too much desire to save, and r1 < r0. Vice versa

E.g., bisection method is safe and slow: for η ∈ (0, 1), e.g., η = 0.8

r1 = ηr0 + (1− η)
(
FK(A(r0), H)− δ

)
Newton methods quicker, but require derivatives and less stable in
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Computing λ∗(r0) by Simulation

Approximating in�nite dimensional object. Many possible methods.

Important, small errors matter.

1 Monte Carlo simulated panel of large population of agents for given rn

Good for high dimensional problems (no curse of dimensionality)

Bad for low dimensional problems (memory and time consuming)

2 Choose population size I ≈ 100, 000

3 Fix individual time zero (ai0, z
i
0) independent of rn

4 Store sequence of shocks for each individual

Draw zi1 from π(z1, z0)

Draw uniform u ∈ [0, 1]. Let zi1 = zj∗ , where

j∗ = arg min
j∗

: u ≤
j∗∑
j=1

π(zj , z
i
0)

For each i update assets a′it+1 using decision rule a′(ait, z
i
t)

5 For each t compute vector of cross-sectional moments Θt (mean,

variance, skewness, kurtosis, percentiles). Stop when |Θt+1 −Θt| small

6 A(rn) is just sample mean of distribution
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Computing λ∗(r0) by Discrete Approximation of Density

Approximate the density λ∗(rn) on grid of (ak, zj)

1 Grid to approximate density should be much �ner than grid for

computing optimal policy ak ∈ {a1, . . . , aM}
2 Start with initial density λ0(ak, zj) (e.g., uniform)

3 Given that optimal policy a′(am, zi) ∈ [ak, ak+1], randomize with

probability
ak+1−a′(am,zi)

ak+1−ak
go to ak and complementary probability(

1− a′(am,zi)−ak
ak+1−ak

)
go to ak+1.

4 That is, for each (ak, zj):

λt+1(ak, zj) =
∑
zi∈Z

∑
m∈Mik

π(zj , zi)
ak+1 − a′(am, zi)

ak+1 − ak
λt(am, zi)

λt+1(ak+1, zj) =
∑
zi∈Z

∑
m∈Mik

π(zj , zi)
a′(am, zi)− ak
ak+1 − ak

λt(am, zi)

where Mik = {m ∈ {1, . . . ,M}|ak ≤ a′(am, zi) ≤ ak+1}

5 Stop when |Θt+1 −Θt| small. A(rn) =
∑
zj

∑
ak
akλ(ak, zj)
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Rough Calibration

• Production: F (K,H) = KαH1−α, α = 1
3
, δ = 0.06

• Preferences: u(c) = c1−γ−1
1−γ , γ ∈ (1, 5)

• Insurance: Set β by targeting K∗

Y ∗ .

If K
∗

Y ∗ too high, too much ability to insure

K∗

Y ∗ = 2? 4? Residential capital? See Koh, Santaeulalia-Llopis, Zheng

(2019) about NIPA revisions and intangibles.

Internal calibration. Guess smaller than βCM . I.e., if complete markets:

r + δ = αKα−1H1−α → βCM = 1

1+α Y
K
−δ

Incomplete market β must be lower due to extra precautionary saving

motive (Figure IIb)

• Borrowing limit: amin set to target percent of households with zero or

negative wealth (15%?)

• Too much ability to smooth consumption? See Blundell, Pistaferri,

Preston (2008); Kaplan and Violante (2010)
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Application: Government Taxes�Insurance vs. E�ciency

• When labor income is partially uninsurable, what is the role for gov't

to provide insurance through taxes

• In Aiyagari model studied, what is optimal labor income tax?

• Adding an endogenous labor supply choice: Floden and Linde (2001)

• u(c, `), leisure ` ∈ (0, 1). Optimal labor supply h(a, z) = 1− `(a, z)

• Per capita lump-sum transfer t �nanced by proportional labor tax τ

c+ a′ = (1 + r)a+ (1− τ)wzh+ φ

H =

∫
zh(a, z)dλ∗

T = τwH

• New features: h(a, z) and tax with balanced budget requirement

• In equilibrium, T = φ
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Application: Government Taxes�Insurance vs. E�ciency

• What is the optimal level of government redistribution via taxation?

• What is the welfare gain from this government provided insurance.

• Find optimal tax rate subject to the allocations being those of a

competitive equilibrium (Ramsey tax problem)

• Welfare function? One option is equal-weight social welfare function

max
τ

W (τ) =

∫
u(c(a, z; τ), 1− h(a, z; τ))dλ∗

• Intuition: τ to small, too much variation in individual consumption. τ

too big, lots of insurance, but too much disincentive to work and lower

level of income. Thus ∃ τ∗ ∈ (0, 1).
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Application: Government Taxes�Insurance vs. E�ciency

• Calibrated to U.S. economy, �nd τ∗ = 0.46, and welfare gain of ≈ 9%

relative to τ = 0

• In Sweden with smaller and less persistent income variance, τ∗ = 0.27

• Increase in τ increases Gini coe�cient in wealth. Why?

• r is increasing in τ . Why?

• Increase in τ has bigger e�ect on Y in U.S. There is higher elasticity in

a′ and h w.r.t. τ when variance of z shocks is higher. This leads to

di�erentially lower K,H when insurance (τ) is increased

• Capital taxes? Progressive taxes? Transfers conditioned on z?
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Application: Government Bonds

Aiyagari and McGrattan (1998)

• Like Floden and Linde (2001), with optimal gov't debt B

T + (1 + r)B = B′ + τwH

• Stationary equilibrium B′ = B

• Government debt is risk free, so must have same r as capital

• Debt cons: Financing interest payments on debt via distortionary taxes

and crowding out productive capital

• Debt pros: GE interest rate e�ect

K(r) +B = A(r)→ K(r) = A(r)−B

• K(r) unchanged. As if aggregate asset supply shifts left by B →↑ r
• Gov't debt enhances liquidity by providing additional means of

consumption smoothing. More debt makes assets cheaper to hold, so

less costly to save precautionarily
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Transition Dynamics

Aiyagari + unexpected one-time permanent increase in τ

• Could compare welfare across two steady states

• Policy question: Should we raise τ? Transition to new steady state?

Vt(at, zt) = max
at+1,ct

u(ct) + β
∑

zt+1∈Z

π(zt+1, zt)Vt+1(at+1, zt+1)

s.t.

ct + at+1 = (1 + rt)at + wt(1− τt)z + φt

a′t+1 ≥ amin
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De�nition of Nonstationary Recursive Competitive Equilibrium

Given initial distribution λ∗ and tax rates {τt}∞t=0 a RCE is {Vt}∞t=0 and

{ct, at+1}∞t=0, {Kt, Ht}∞t=0, {rt, wt}∞t=0, {φt}∞t=0, and {λt}∞t=0 such that

1 Given {rt, wt}∞t=0 and {φt, τt}∞t=0, decision rules {ct, at+1}∞t=0 solve the

household problem and {Vt}∞t=0 are the associated value functions

2 Given {rt, wt}∞t=0, �rms choose {Kt, Ht}∞t=0 optimally

3 Labor markets clear ∀ t: Ht =
∫
zdλt = H

4 Asset markets clear ∀ t: Kt =
∫
at+1(a, z)dλt

5 Goods markets clear ∀ t:
∫
ct(a, z)dλt +Kt+1 − (1− δ)Kt = F (Kt, H)

6 Balanced Government Budget Constraint ∀ t: φt = τtwtH

7 Consistent distribution: ∀S ∈ Σ, λt+1 satis�es

λt+1(S) =

∫
Qt((a, z),S)dλt

Qt((a, z),S) = Iat+1(a,z)∈A
∑

zt+1∈Z

π(zt+1, z)
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Algorithm for Computing the Equilibrium

Exercise: τ0 = τ∗, {τt = τ∗∗}∞t=1 Assume by some �nite large T economy

settles to new steady state

1 Fix T (e.g., T = 200)

2 Compute initial steady state for τ = τ∗: {V ∗, c∗, a∗,K∗} and �nal

steady state for τ = τ∗∗: {V ∗∗, c∗∗, a∗∗,K∗∗}

3 Guess a sequence of aggregate capital {K0
t }∞t=1 s.t. K0

1 = K∗ and

K0
T = K∗∗

4 Given constant H:

1 w0
t = FH(K0

t , H)

2 r0
t = FK(K0

t , H)− δ
3 φ0

t = τtw0
tH

5 Solve optimal household policies. First,

{V 0
T , c

0
T , a

0
T } = {V ∗∗, c∗∗, a∗∗,K∗∗}. Solve by backwards induction for

{V 0
t , c

0
t , a

0
t+1}T−1

t=1
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Algorithm for Computing the Equilibrium

6 Given optimal policies construct sequence of transition functions

{Q0
t}Tt=1

7 Starting from λ0
0 = λ∗, use {Q0

t}Tt=1 to generate {λ0
t}Tt=1

8 Given {λ0
t , a

0
t+1}Tt=1 calculate A0

t+1 =
∫
a0
t+1(a, z)dλ0

t

(e.g., via simulation)

9 Check capital market clearing: max1≤t≤T |A0
t −K0

t | small enough

Note: If |A0
T −K

∗∗| small, then T was big enough

10 If capital markets don't clear, update guess of capital sequence. E.g.,

Kn+1
t = ηKn

t + (1− η)Ant ∀ t
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Welfare: Conditional vs. Rawlsian

Conditional welfare comparison: Comparing utility for agent with initial

state (a0, z0) in steady state with policy c∗t versus in transition with policy

c̃t

V ∗(a, z) = E0

[
∞∑
t=0

βtu(c∗t )|(a0 = a, z0 = z)

]
versus

Ṽ (a, z) = E0

[
∞∑
t=0

βtu(c̃t)|(a0 = a, z0 = z)

]

Consumption equivalent variation: �How much change in c in every state in

stationary equilibrium to be indi�erent to living in transition economy?�

E0

[
∞∑
t=0

βtu ((1 + ω(a0, z0))c∗t )

]
= E0

[
∞∑
t=0

βtu(c̃t)

]

If u =
c1−γ

1− γ : (1 + ω(a0, z0))1−γV ∗(a, z) = Ṽ (a, z)

ω(a0, z0) =

[
Ṽ (a, z)

V ∗(a, z)

] 1
1−γ
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Welfare: Conditional vs. Rawlsian

• With conditional welfare change, can compute entire distribution of

welfare changes. Political economy?

• Compare to �veil of ignorance� Rawlsian welfare function

• �Before knowing initial state, with probability drawn at random from

λ∗, what is the welfare di�erence between being born in steady state

vs. transition economy?�

ωU =

[ ∫
Ṽ (a, z)dλ∗∫
V ∗(a, z)dλ∗

] 1
1−γ

− 1

• As highlighted by conditional welfare, some might loose and some

might gain. Given a weighting function, this aggregates to total welfare

change

• Tricky with overlapping generations and those not yet born

• ωU can increase due to level e�ect (increase in average consumption),

uncertainty e�ect (decrease in volatility of individual consumption

path), and egalitarian e�ect (decrease in inequality across agents).

ωU mixes concern for risk with concern for interpersonal equality
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Decomposing Welfare Gains

Under certain conditions, conditional welfare can be decomposed additively

into level and uncertainty e�ects (Floden 2001). E.g., compare total welfare

ω between steady states A and B. Simplify notation by dropping ω(a, z).

E0

[
∞∑
t=0

βtu
(

(1 + ω)cA
)]

= E0

[
∞∑
t=0

βtu(cB)

]

• De�ne average consumption Cj for j = A,B: Cj =
∫
cj(a, z) dλj

• De�ne welfare change from levels as (1 + ωL)CA = CB

• De�ne certainty equivalent consumption bundle C̄j :

E0

[∑∞
t=0 β

tu
(
cj
)]

=
∑∞
t=0 β

tu
(
C̄j
)

• De�ne cost of uncertainty ηj as the fraction of average consumption an

individual would give up to avoid uncertainty:∑∞
t=0 β

tu
(
(1− ηj)Cj

)
=
∑∞
t=0 β

tu
(
C̄j
)

• De�ne welfare change from change in risk as ωR = 1−ηB
1−ηA − 1

• If u homogeneous, then 1 + ω = (1 + ωL)(1 + ωR) ≈ 1 + ωL + ωR

31 / 55



Aggregate and Idiosyncratic Risk: Krusell-Smith (1998)
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Krusell-Smith Model: Technology

Krusell-Smith (1998): Aiyagari + Aggregate �uctuations

• Business cycles interacting with idiosyncratic risk

• Distribution becomes aggregate state variable; needed to forecast prices

• No analytical solution or existence/uniqueness/stability proofs,

distribution is in�nite dimensional → approximate equilibrium

• For simplicity let aggregate TFP ζt ∈ {ζ`, ζh} and idiosyncratic

productivity zit ∈ {z`, zh} for low and high

• Let π(ζ′, z′, ζ, z) = Pr(ζt+1 = ζ′ ∧ zt+1 = z′|ζt = ζ ∧ zt = z)

A Markov process for the joint evolution of exogenous states

Typically z transition depends on ζ, but ζ transition independent of z

Easier to �nd a good job when exiting recession:

π(ζb, zg , ζb, zb) < π(ζg , zg , ζb, zb) and harder to keep a good job when

entering recession π(ζb, zg , ζg , zg) < π(ζg , zg , ζg , zg)

• Now two idiosyncratic state variables (a, z) and two aggregate state

variables (ζ, λ)
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Krusell-Smith Model: Household Problem

V (a, z; ζ, λ) = max
a′,c

u(c) + β
∑
z′

∑
ζ′

π(ζ′, z′, ζ, z)V (a′, z′; ζ′, λ′)

s.t.

c+ a′ = (1 + r(ζ, λ))a+ w(ζ, λ)z

a′ ≥ amin

λ′ = Γ(ζ, λ, ζ′)

• V now depends on λ because households need to compute prices, prices

depend on aggregate capital, and aggregate capital depends on the

distribution of assets (recall A(r) in Aiyagari)

• Γ(ζ, λ, ζ′) is the law of motion of the endogenous aggregate state

• Key issue: need equilibrium law of motion for λ to forecast prices.

Tough!

• Γ depends on ζ b\c prices depend on ζ and decisions depend on prices

• Γ depends on ζ′ b\c measure of workers with (z`, zh) depends on ζ′
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Krusell-Smith: The Distribution as a State Variable

Consider the Euler equation:

uc((1 + r(ζ, λ))a+ w(ζ, λ)z − a′(a, z; ζ, λ)) ≥

βE
[
(1 + r(ζ′, λ′))uc((1 + r(ζ′, λ′))a′(a, z; ζ, λ) + w(ζ′, λ′)z′ − a′(a′(a, z; ζ, λ), z′; ζ′, λ′))

]

• To solve for a′, households need to forecast prices r(ζ′, λ′), w(ζ′, λ′),

which depend on λ′

• Households need to know equilibrium law of motion Γ to forecast λ′

• Γ maps distributions to distributions → need for approximation
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Krusell-Smith: Recursive Competitive Equilibrium

A Recursive Competitive Equilibrium is a value function V , household

decision rules a′, c, �rm policies H,K, pricing functions r and w, and a law

of motion Γ, such that

• Given pricing functions r(ζ,K) and w(ζ,K), decision rules a′, c solve

the household problem and V is the associated value function
• Given prices, �rms choose K and H optimally

r(ζ,K) + δ = ζFK(K,H)

w(ζ,K) = ζFH(K,H)

• Labor market clears: H =
∫
z dλ

Note H is no longer constant. Build π so ζ su�cient statistic for H, i.e,

H ∈ {H`, Hh}. Then, H can be perfectly forecasted using π. Prices

depend on K/H, but H known function of ζ.

• Asset market clears: K =
∫
a dλ

• Goods market clears:∫
c(a, z; ζ, λ) dλ+

∫
a′(a, z; ζ, λ) dλ = ζF (K,H) + (1− δ)K

• Aggregate law of motion Γ generated by exogenous π and endogenous

a′ satis�es

λ′(A×Z) = Γ(ζ, λ, ζ′)(A×Z) =
∫
Qζ′,ζ((a, z),A×Z) dλ

Qζ′,ζ((a, z),A×Z) = Ia′(a,z;ζ,λ)∈A
∑
z′∈Z π(ζ′, z′, ζ, z)
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Computational challenge

• Distribution λ as a state variable

in�nite dimensional object λ

moves around in response to aggregate shocks according to Γ

�xed point problem: Γ → expectations → actions → Γ

need parsimonious description of λ,Γ

• Approaches based on Krusell-Smith

describe λ by �nite set of moments

polynomial function for Γ

verify �xed point by simulation

• Approaches based on Reiter: perturbation around Aiyagari

describe λ by histogram

linear law of motion of histogram in aggregate shocks

�xed point by method of undetermined coe�cients
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Krusell-Smith: Algorithm for Computation of Approximate Equilibrium

• No results on existence of a recursive competitive equilibrium with

aggregate states just current TFP and distribution over idiosyncratic

states.

• See Miao (JET 2006) and Cao (JET 2020) for results with RCE with

extended state space, including distribution of expected discounted

utilities

• Many di�erent numerical methods to compute K-S type approximate

equilibria

Special issue: Journal of Economic Dynamics and Control

Volume 34, Issue 1, Pages 1-100 (January 2010)

Computational Suite of Models with Heterogeneous Agents: Incomplete

Markets and Aggregate Uncertainty

Edited by Wouter Den Haan, Ken Judd and Michel Juillard

• Terry (JMCB 2017): comparison of methods in �rm problems
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Krusell-Smith: Computing an Approximate Equilibrium

• Insight: Any distribution can be characterized by all of its moments

(maybe in�nitely many)

• Approximate in�nite dimensional distribution with �nite set of

moments

• Let Θ be a vector of the �rst M moments of the wealth distribution,

i.e., the marginal of λ w.r.t. a
• New state is {θ1, θ2, . . . , θM} with L.o.M Θ′ = ΓΘ(ζ,Θ)

No longer have dependence on ζ′ since only mapping wealth distribution

• Interpretation as limited information/bounded rationality

• Need to pick M and a functional form for ΓΘ(ζ,Θ)

• Insight: w, r are functions only of K, so M = 1 works extremely well

here

• Specify linear (or log-linear) law of motion to forecast K′ as function of

K

K′ = b0ζ + b1ζK
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Krusell-Smith: Algorithm for Computation of Approximate Equilibrium

Household problem replace λ as state variable with K and Γ with ΓΘ.

Dimension reduced from in�nity to one. Compare to no-aggregate risk,

which guessed K or transition dynamics which guessed deterministic

sequence of Kt. Now guess law of motion for Kt. For generality, let M

arbitrary.

1 ΓΘ(ζ,Θ) = Θ′ = B0
ζ +B1

ζΘ

2 Guess coe�cient matrices B0
ζ with dim (M × 1) and B1

ζ with dim

(M ×M)

3 r(ζ,Θ) = ζFK
(

θ1
H(ζ)

)
− δ and w(ζ,Θ) = ζFH

(
θ1
H(ζ)

)
4 Solve the household problem for savings level a∗ on (a, z, ζ,Θ) grid

that satis�es EE using standard methods to compute a′ function.

Compared to Aiyagari, extra state variables Θ add grid dimensions

uc((1 + r(ζ, θ1))a+ w(ζ, θ1)z − a
∗
) ≥

β
∑
ζ′,z′

(1 + r(ζ
′
,Γ1(ζ,Θ))) uc[(1 + r(ζ

′
,Γ1(ζ,Θ)))a

∗
+ w(ζ

′
,Γ1(ζ,Θ))z

′ − a
′
(a
∗
, z
′
; ζ
′
,Γ(ζ,Θ))]
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Krusell-Smith: Algorithm for Computation of Approximate Equilibrium

5 Simulate panel for N individuals for T periods

Draw sequence of aggregate shocks

Draw sequence of idiosyncratic shocks for each i conditional on ζ

sequence

Use decision rules to generate panel of assets ait.

Compute Θ for each t using sample cross-sectional moments

6 Discard �rst T 0 periods of data and run OLS regression for each ζ

(e.g., if ζt ∈ {ζ`, ζh} run two distinct regressions separating time

periods when ζ = ζ` from those when ζ = ζh)

ΓΘ(ζ,Θ) = Θ′ = β0
ζ + β1

ζΘ

1 If {β0
ζ , β

1
ζ} 6= {B0

ζ , B
1
ζ}, then update {B0

ζ , B
1
ζ} guess and iterate to

convergence. Finding �xed point on forecasting rule {B0
ζ , B

1
ζ}

2 Convergence means the approximate law of motion used by agents to

forecast is consistent with the one generated in equilibrium by optimal

behavior
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Krusell-Smith: Near Aggregation

How good is this approximation to the full information rational

expectations equilibrium?

• Measures of �t of forecasting regression, e.g., R2

• Add additional moments. Does forecasting accuracy improve?

• K-S result is that M = 1 does remarkably well in this case:

logK′ =

0.095 + 0.962 logK for ζ = ζh

0.085 + 0.965 logK for ζ = ζ`

R2 = 0.999998

• Near Aggregation

If saving policies were linear, forecasting rule as function of K is exact:

If a′(a, z, ζ, λ) = b0ζ + b1ζa+ b2ζz then

K′ =
∫
a′(a, z, ζ, λ) dλ = b0ζ + b1ζK + b2ζHζ = b̃0ζ + b1ζK

Away from borrowing constraint, nearly linear saving policies

Wealthy have more weight in determining aggregate wealth

Aggregate shocks do not signi�cantly redistribute wealth across agents
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Accuracy of Approximated Law of Motion

• Solutions with very high R2 can still be inaccurate

• Want to asses accuracy of Kt+1 = b0ζt + b1ζtKt

• Estimated to be best linear �t to time-series of average capital K∗t of a

panel generated by optimal decision rules and exogenous ζ sequence

• Key: K∗t+1 and K∗t only related through decision rules, not directly

through previous law of motion

• De�ne ut+1 = K∗t+1 −Kt+1, with K
∗
t+1 as simulated and Kt+1

predicted based on law of motion at time t

• Then, ut+1 = K∗t+1 − (b0ζt + b1ζtK
∗
t ), since each period starts with the

true simulated value and evaluates the one step ahead forecast error

starting from the truth

• Error de�ned this way understates problems with forecasting since it

doesn't allow errors to propagate across time. It always starts back on

track with the true K∗
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Alternatives to Standard Accuracy Tests

• A bad approximating law of motion pushes observations away from

truth each period.

• Want to allow errors to accumulate for a true measure of accuracy of

approximating LoM.

• Alternative: ũt+1 = K∗t+1 − (b0ζt + b1ζtKt)

• I.e., allow forecast errors to compound

• Also, report max error instead of mean squared error

• Can plot K∗ vs. approximated sequence to see where forecast is worst

• R2 much lower for ∆Kt

• Instead of one-step ahead forecast error, compute τ -step ahead forecast

errors
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Sampling Variation: Wealth per Person of Unemployed

Algan, Allais-Den Haan-Rendhal, Handbook of Comp Econ chapter 6

• ζ = ζ` until t = 155 when ζ = ζh

• Not many unemployed agents, so sampling error can be large even with

large simulated population
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Sampling Variation: Fraction of Borrowing-Constrained People

Algan, Allais-Den Haan-Rendhal, Handbook of Comp Econ chapter 6

• ζ = ζ` until t = 155 when ζ = ζh

• With continuum, fraction of constrained agents increases as move from

recession to boom
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Krusell-Smith: Market Clearing, Prices, and Predetermined States

• If prices are functions of marginal product of aggregate state variable,

iterating over law of motion for the aggregate state yields prices

consistent with market clearing

• Given sequence of ζt and initial Kt, prices at t depend only on known

Kt

• Individual saving policies do not a�ect prices at t and by construction

they aggregate into Kt+1 predicted by law of motion. Thus, asset

markets at t+ 1 clear. Prices at t+ 1 are again equal to marginal

product of Kt+1

• Market clearing is trivial because prices depend only on predetermined

states

• If decision at t a�ected prices at t, more complicated

Endogenous labor supply

Risk-free bond

Housing
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Reiter Method - Perturbation Approach
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Approximating functions

• Functions f (x; θ)

in application: x varies, θ �xed

want approximating function f̂ (x; θ) summarized by �nite vector

• Perturbation

Taylor's theorem:

around a point x∗

f̂ (x; θ) = f (x∗; θ) + fx (x∗; θ)′ (x− x∗) + ...

around a parameter value θ∗

f̂ (x; θ) = f (x; θ∗) + fθ (x; θ∗)′ (θ − θ∗) + ...

• Projection

global approximation

linear space of functions with basis {φn (x)}
�nd linear combination of basis functions closest to f (x; θ)
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Perturbation

• Compute
√

26

√
26 =

√
25(1 + 0.04) = 5 ∗

√
1.04 ≈ 5 ∗ 1.02 = 5.1

• Exact solution is 5.099

• Idea: solve easier problem without approximation and add small noise
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Perturbation

• General idea: looking for f s.t. T (f) = 0

• Build family of problems indexed by scalar ε:

T̃ (f (ε) , ε) = 0

T̃ (f (1) , 1) = T (f), so T̃ (f (1) , 1) = 0 is our original problem of interest

T̃ (f (0) , 0) = 0 is an easy problem to solve

• Assumptions

need derivatives ∂T̃ /∂f , ∂T̃ /∂ε & ∂f/∂ε

regularity conditions s.t. implicit function theorem applies at ε = 0

• Taylor expansion

f (ε) = f (0) + ∂f/∂ε (0) ε+ ...

• Find coe�cient from

∂T̃

∂f
(f (0) , 0)

∂f

∂ε
(0) +

∂T̃

∂ε
(f (0) , 0) = 0
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Typical system for dynamic REE

• Di�erence equation

f (Xt−1, Xt, Yt, Zt) = 0

Eit

[
gi (Xt−1, Xt, Yt, Yt+1, Zt, Zt+1)

]
= 0

• State variables st := (Xt−1, Zt)

• Time invariant solution: functions X ′ (s) and Y (s) st ∀s:

f
(
X,X ′ (s) , Y (s) , Z

)
= 0,

Ei
[
gi
(
X,X ′ (s) , Y (s) , Y

(
X ′ (s) , Z′

)
, Z, Z′

∣∣Z] = 0,

n+
∑
imi functional equations in n+

∑
imi functions

standard solution algebra (Blanchard-Kahn, Uhlig, Sims)
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Typical system for dynamic REE

• Steady state s̄ with X ′(s̄) = X ′(X̄, Z̄) = X̄ and

f
(
X̄, X̄, Y (X̄, Z̄), Z̄

)
= 0,

gi
(
X̄, X̄, Y (X̄, Z̄), Y

(
X̄, Z̄

)
, Z̄, Z̄

)
= 0

• Exogenous stochastic law of motion for Z

• Family of problems: replace Z by Z̄1−εZε

ε = 1 is problem of interest

ε = 0 is deterministic problem

• Take derivatives of f, g with respect to X,Z, ε to �nd coe�cients in

expansion of X ′, Y

• Treatment of uncertainty

�rst order expansion certainty equivalent

second order: constant risk premia

third order: time varying risk premia
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Reiter idea

• Large system for incomplete markets model with aggregate shocks

family of Euler equations (including cuto� where constraint binds)

transition of wealth distribution

X includes histogram of wealth distribution

• First order approximation

steady state = Ayiagari solution!

large coe�cient matrices found by computer

• Properties

inherits nonlinearity in behavior towards idiosyncratic risk

wealth distribution moves around with aggregate risk

but behavior towards aggregate risk is certainty equivalent

• Application to continuous time by Moll et. al.
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Model Generated Wealth Distributions and Data
• Income distribution is an input into model

• Wealth distribution is endogenously determined

• Does K-S model have good match to empirical wealth distribution? No.

• Many ways to modify model. One way: heterogeneous discounting βi

• Krusell-Smith add stochastic β with three types

• Caroll, Slacalek, Tokuoka, and White (QE 2017) add uniform

deterministic β in some range

• Does it matter that we match data or how we match data?

• What are preference parameters?
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