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MOTIVATION

- Job-to-job transitions are an important part of labor reallocation
- 60% of new hires come directly from other jobs
- 10% of workers each year make an EE transition
- Moving jobs is a common way of obtaining earnings increases
- Yet there appears to be a substantial amount of wage cuts
- Wage cuts are not necessarily puzzling from a dynamic perspective if they are
associated with increases in value
- Key question: are these wage cuts associated with positive or negative changes in
value?
- Important for understanding efficiency of the labor market, risk over the life cycle,
policy design
- Motivations for switching jobs affect the allocation of workers to firms and determine
which features should be included in models
- Link between labor market fluidity and welfare



MOTIVATIONS FOR WAGE AND VALUE CHANGES

+ Value

- Value

- Wage

+ Wage

Accept wage cut now in ex-
change for future wage growth:
Postel-Vinay and Robin (2002)

Good move for both immediate
wages and future wages

Non-wage amenities, forced
moves: Sorkin (2018), Hall and
Mueller (2018), Moscarini and
Postel-Vinay (2019)

Borrowing constraints:  Lise
(2012), Luo and Mongey (2019)




1. Refine measurement of job-to-job transitions

- Made possible by high frequency administrative data from Denmark
- Precise pinpointing of transition and clear wage measures

2. Compute wage change CDFs for stayers and switchers
3. Semi-parametric estimation of value of a job for a worker
- Nest value functions in commonly used search models
4. Analyze the joint distribution of wage changes and value changes for job-to-job
transitions

- With model, we assign a change in value associated with every wage change we observe
- Quantify value cuts, toward an understanding of who is taking them and why



PREVIEW OF RESULTS

Measurement

- About half of job-to-job transitions feature a wage cut, but only a quarter of these
are more than 10%

- But it makes a difference how you measure these!

Wages vs. values

- Changes in value are typically smaller in magnitude than wage changes
- 60% of wage cuts also feature declines in value

- Motivations for EE switches tend to be related to unobservable match + job
characteristics

- Lots of variation as to whether future wages or future transitions are quantitatively
responsible for the value changes

Related literature
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MEASUREMENT AND MOTIVATING
FACTS



DATA

Danish administrative registry data

- Entire Danish population from 2008 to 2017

- Monthly payroll records reported by employers

- Total pay each month, firm ID, contractual hours, occupation, industry,
demographics,.. .

- Public transfers database for unemployment and OLF states

What is a job?

- Firm x 2-digit occupation

- Why? Wages in same firm differ across occupation, relevant for model

- Cells under 1000 person-quarter observations are grouped by 4-digit industry x
2-digit occupation

Quarterly aggregation to keep model tractable, but still can track moves through U



DISTRIBUTION OF WAGE GROWTH
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How TO MEASURE WAGES

Construct measure of base real wage

- Issue: spikes during the last month, representing payouts from holiday fund

- Drop last wage observation + calculate 12-month centered moving average
Sample: full-time workers who are attached to the labor force

- Only consider jobs with contractual hours within 2% of 160 hours per month
(full-time)

- Ensures measured wage change during job switch not driven by hours



WAGE GROWTH FOR SWITCHERS: ALTERNATE MEASUREMENTS

Decrease >10% | Increase > 10%
Baseline 0.13 0.14
Fail to drop last wage obs. 0.19 0.14
Looser hours restriction 0.17 0.18
Previous two combined 0.26 0.16

- Our adjustments reduce the noise present in the original data

- Careful measurement matters, especially at the tails



MODEL OF JOB VALUES




OBJECTIVES

- Want to translate our wage changes into value changes
- PDV of future wages in a job consists of:
1. Wage stream in that job
2. Transition rates to other jobs
- Need a model for
1. Predicting wages for any worker in any job
2. Predicting transitions between jobs for any worker
- Approach

1. Define worker and job types
2. Define state variables
3. Estimate wage and transition as function of state variables by type

- How to pick state variables? Guided by theory. Today: a variant of the wage posting
model of Burdett and Mortensen (1998)



ENVIRONMENT

Workers

- Workers can be one of i € I types (will drop i subscripts)
- Type-specific component of earnings: g
- Live froma=1,2,...,A
- Age profile of earnings differs across types: h(a)
Jobs

- Workers transition between J jobs
- This set also includes non-employment states
- Piece-rate in each job: w(j)

Wages: w(j)h(a)gz
- 7. match-specific productivity
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ENVIRONMENT

Matches

- When matched to a job, workers have a match-specific productivity z
- Helps match the wage changes of job switchers

- After moving j — k, draw new z’ from a distribution that depends on (j, k,2)
- 7' revealed if the match is created
- Allow for persistence in zwhen workers switch between jobs
- Productivity in new job may depend on the identity of the old job
- Stayers’ wages are subject to i.i.d. mean 0 shocks e
- Helps match stayers’ wage growth

- Contact rate from job j to k: Ax(a,j, 2)

- Workers may be more likely to leave lower-paying jobs or jobs at which they're not
productive



VALUE FUNCTION

today’s wages

——~—
v(a,j,z) = w(j) h(a)gz

+ B8 1) M (a,,2) Lggaykzy=1yBaxev (a + 1, R, 2€') + A(a, ), 2) Eev (a + 1./, z¢")

expected value of switching from job j to job k expected value of staying at job j

- Burdett-Mortensen: constant job-specific wage piece rate, probability of moving to
other jobs depends on current job, no renegotiation in response to outside offers

- Generalizations: life-cycle, match-specific productivity, i.i.d. shocks to stayers’ wages
- Instead of computing equilibria of structural model, calculate ingredients needed to
solve for v(a,j, 2)



IMPLEMENTATION

Ingredients: w(j), h(a),g,z, A\r(a,},z), expectations over Z’ for switchers
Worker types

- Correspond to 4 fixed education x gender categories
Job types j

- 6019 employment states (about half correspond to firm x occupation; other half
corresponds to industry x occupation)

- 10 non-employment states: short- and long-term unemployment, retirement,
maternity leave, sick leave, etc. that we observe transfers for

Age profile h(a)

- w(J),z constant within match — average wage change between a and a+ 1 for stayers
- Pool across jobs and over time, take cumulative sum of earnings changes
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WAGE PREMIA w())

Separate each component of earnings: wy(a, J,z) = w(j)h(a)gz

- Selection issue: what if workers’ mobility decisions are based on z?
- Averaging earnings within jobs and worker types would give biased estimates of w(j)

- Assumption: while unemployed, z is low enough such that all workers accept any job
offer = their distribution of z is the same across jobs

With g in hand, for jobs with enough hires from U, w(j) is:

1 a Wn(@n,jn,2n) _ 1 iw(})h(d)gE{Z]:w(j)

L5 Bl - VN jp =]
U & ha)g. U h(a)g o =

n=1

- Key: expectation over z is the same as the unconditional, normalized to 1 for all j
- For jobs less workers hired from U, impute w(j) via statistical methods
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MATCH-SPECIFIC PRODUCTIVITY

- Match-specific productivity z, in data:

_ Wn(Qn,Jn,Zn)
w(jn)h(an)gn
- Necessary step for computing values: law of motion for 7/

- Want to generate accurate wage predictions at the individual level so we can trust
value predictions!
- Model with and without z fit the overall CDF of wage changes well

n

- For job switchers from j to k, want to forecast Z’ as a function of the model's state
variables: Z = f(a,j, Rk, 2)
- Specification that yields the best forecast is:
logz] =Z+ plogz; + B logw; + B, logw! 4+ Bzmean(z|w;) + Bsmean(z|w;)
+ Bsvar(z|w;) + Bevar(zlw) + n;



EE WAGE CHANGE PREDICTIONS: WITHOUT MATCH-SPECIFIC PRODUCTIVITY

Wage Change Predictions
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- On their own, piece rates do not do well at predicting individual wage changes



EE WAGE CHANGE PREDICTIONS: WITH MATCH-SPECIFIC PRODUCTIVITY Z

Wage Change Predictions
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- Incorporating z into the model helps to better match individual wage changes CZ=EEE s



EVERYTHING ELSE

- Transition probabilities: A (a,j, 2)
- Use observed transitions among the whole set of jobs in the data
- Workers at better paying jobs or with higher z may be less willing to leave
- Group a into 3 age bins and z into 4 quartiles
- Distribution of z for UE transitions
- Comes from variance of z in the data for workers hired out of U
- Distribution of e
- Comes directly from variance of wage changes for stayers
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RESULTS




DENSITIES OF WAGE AND VALUE CHANGES

Distributions of wage and value changes
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- Value changes smaller in magnitude than wage changes 2t



MAJORITY OF MOVES RESULT IN VALUE INCREASE

Whole Population

100.0% of switchers
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- Pr(value increase | wage cut) = 39.6%; Pr(value cut | wage increase) = 23.8%
- No major differences within fixed worker groups (gender x education) -



NGER WORKERS TEND TO INCREASE w; OLDER WORKERS TEND TO INCREASE Vv
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- Younger workers more likely borrowing constrained
- Older workers tend to take more wage cuts that result in higher values 22



BETTER MATCHES TEND TO INCREASE BOTH WAGES AND VALUE
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- Increasing z is likely to be good for both wages and values
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STILL LOTS OF WAGE CUTS FOR MOVES TO HIGHER-PAYING JOBS

1st quartile piece rate change 4th quartile piece rate change
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- In contrast to z, moving up in w(J) is more closely tied to increases in value

- Piece rate # wage # value o



TRANSITION RATES ARE AN IMPORTANT COMPONENT OF VALUE

Ratio: wage component to transition component of value
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- Decompose the change in value from (j,z) to (k,Z) into 2 components, coming from
wages and transition rates

. . 25
- Value changes come from all different mixes



CONCLUSION AND FUTURE WORK

- Developed a methodology for assigning values associated with job-to-job transitions

- Findings
- Careful measurement for documenting features of EE switches
- Significant mass in all quadrants of wage change/value change plane
- Unobserved heterogeneity is key for determining values behind each switch

- Next steps
1. Better understand the motivations behind the transitions
- Recover distribution of non-wage amenities or reallocation shocks that rationalize negative

value switches
- See if switches coincide with family events, geographic moves, changes in wealth or

consumption, etc.
2. Further develop the model

- Allow for other forms of worker and job heterogeneity
- Extend to Postel-Vinay and Robin (2002) setting
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RELATED LITERATURE

Measurement

- Nominal wage changers for stayers: Grigsby, Hurst, Yildirmaz (2020)

- Wage changes using administrative data: Kurmann and McEntarfer (2018), Jardim et
al. (2019)

Reasons for wage cuts

- Future wage growth, transitions to other jobs: Postel-Vinay and Robin (2002)
- Non-wage amenities: Sorkin (2018), Hall and Mueller (2018)
- “Godfather” shocks: Moscarini and Postel-Vinay (2019) and lots of others



TYPE-SPECIFIC PREMIA (/)

- Let Uj; be the number of workers of type i hired into job j from unemployment

- For jobs with U;; > 25, compute the following:

1 §R Wn(@noinzn) _ 1 g w@R@IOER _ o

— = — Vi e fla =
Us 2= h(an) U; h(a) Jn=)

n=1

- Key: expectation over z is the same as the unconditional, assumed to be 1 for all j

- Set g(i) = 1 for baseline group, weighted average of g(i)w(j) over j, and compare to

weighted average of w(j) for baseline group



WAGE PREMIA w(j): FOR JOBS WITH FEWER OBSERVATIONS

1. For jobs with few observations, first compute naive &(j) using all hires:
N;
Z Wn(am/n Zn
h(an)gn

2. For jobs with U; > 10 estimate the following:
logw(j) = Bo + B1 log&(j) + BoX; + ¢

X; contains firm size, occupation, industry

3. Use this relationship to impute a w(j) for jobs with less than 10 hires from
unemployment



RELATIONSHIP BETWEEN w(j) AND &())

40000 -

30000 -

omega_tilde

20000~

15000 20000 25000 30000
omega



EE WAGE CHANGE PREDICTIONS: WITH OBSERVED MATCH-SPECIFIC PRODUCTIVITY Z

Wage Change Predictions
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DENSITIES OF WAGE AND VALUE CHANGES

Distribution of wage changes Distribution of value changes
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EDUCATION X GENDER

Female + College Male + College
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TENURE

Tenure < 2 years Tenure > 2 years
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FIRM AND OCCUPATION SWITCHES

Firm Switch Only Occupation Switch Only Firm + Occupation Switch
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INITIAL WAGE
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INITIAL PIECE RATE
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INITIAL Z
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DECOMPOSITION BY QUADRANT

Decrease Wage + Increase Value Increase Wage + Increase Value
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